# SISTEM INFORMASI MANAJEMEN PROYEK DI PT. DIANTAMA REKANUSA

Angga Irawan<sup>1</sup>, Gentisya Tri Mardiani<sup>2</sup>

<sup>1,2</sup> Teknik Informatika – Universitas Komputer Indonesia Jl. Dipatiukur 112-116, Bandung 40132, Indonesia

E-mail: irawanangga@rocketmail.com<sup>1</sup>, gentisya.tri.mardiani@email.unikom.ac.id<sup>2</sup>

### **ABSTRAK**

PT. Diantama Rekanusa merupakan perusahaan dibidang konsultan. Dari beberapa permasalahan yang terjadi di perusahaan, maka dibuatlah tujuan penelitian ini untuk membantu Penanggung Jawab Teknis untuk mengetahui keterikatan antar pekerjaan proyek dan mengetahui pekerjaan tidak boleh terlambat karena bisa mempengaruhi pekerjaan lainnya, membantu menentukan kebutuhan tenaga kerja proyek agar proyek selesai sesuai dengan waktu yang telah direncanakan, membantu dalam mengelola dan mengidentifikasi risiko dengan dampaknya sebelum proyek dilaksanakan, dan membantu mengendalikan kinerja proyek, biaya dan waktu supaya dana yang dianggarkan sesuai dengan yang ditetapkan. Tahapan penelitian ini mulai dari identifikasi masalah, pengumpulan data, analisis sistem, analisis kebutuhan , perancangan sistem, implementasi sistem, pengujian sistem dan tahap akhir adalah penggunaan sistem. Metode yang digunakan dalam manajemen proyek ini yaitu Critical Path Method (CPM) untuk menetukan jalur Workload Analysis untuk menentukan kebutuhan tenaga kerja, Expected Monetary Value (EMV), dan Earned Value Management (EVM) untuk pengendalian proyek. Pengujian sistem menggunakan black-box dan wawancara untuk pengguna akhir. Hasil penelitian ini disimpulkan bahwa metode-metode yang digunakan dapat membantu Penanggung Jawab Teknis dalam menentukan keterikatan antar pekerjaan proyek, menentukan tenaga kerja proyek, mengelola dan mengidentifikasi risiko, dan mengendalikan proyek dari segi biaya dan waktu.

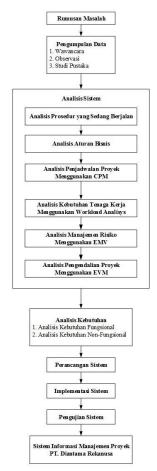
Kata kunci : Manajemen Proyek, Critical Path Method, Workload Analysis, Expected Monetary Value, Earned Value Management

#### 1. PENDAHULUAN

PT. DIANTAMA REKANUSA merupakan salah satu perusahaan dalam bidang *Consultant Engineering* yang berada di Kota Bandung yang beralamat di Jalan Cikutra Baru XI No. 15 Bandung.

Pekerjaan yang biasanya ditangani oleh PT. DIANTAMA REKANUSA adalah *Feasibility Study*, Pengukuran atau Pemetaan, dan lainnya

Berdasarkan analisis dan hasil wawancara dengan Penanggung Jawab Teknis menjelaskan dalam beberapa proyek terjadi kekurangan tenaga kerja untuk menyelesaikan target, Seperti proyek Perencanaan Jalan Nasional di Provinsi Nusa Tenggara Timur 2, bahwa pengerjaan survei inventori jalan yang direncanakan selesai dalam waktu 4 minggu yaitu pada minggu ke-9 sampai minggu ke-12 menjadi selesai dalam waktu 5 minggu atau mengalami keterlambatan sampai minggu ke-13. Dalam laporan kendala pada minggu ke-9 tercatat terjadi penurunan target karena faktor cuaca yaitu hujan yang berdampak pada kinerja sumber daya manusia. Pada minggu ke-10 sampai ke-11 pihak perusahaan memperkirakan bahwa masalah masih bisa ditangani dengan memperkecil deviasi yang terjadi. Selanjutnya pada minggu ke-12 perusahaan menambah tenaga kerja dengan asumsi menyelesaikan semua target agar sesuai dengan jadwal perencanaan. Namun pada minggu ke-12 terjadi hujan kembali yang mengakibatkan target pekerjaan tidak sepenuhnya selesai dan pengerjaan diperpanjang sampai minggu ke-13. Terlambatnya proyek juga akan berdampak langsung kepada biaya dan waktu proyek sehingga perusahaan mengalami kerugian atau mendapatkan sanksi dari pemilik proyek karena telah melebihi batas waktu yang telah ditentukan.


Berdasarkan permasalahan yang telah diuraikan maka dibutuhkan solusi untuk mengatasi permasalahan yang terjadi di PT. DIANTAMA REKANUSA, yaitu dibutuhkannya suatu sistem yang dapat membantu Penanggung Jawab Teknis untuk mengetahui keterikatan antar pekerjaan, menentukan kebutuhan tenaga kerja proyek, mengidentifikasi risiko sebelum proyek dilaksanakan, mengelola waktu dan biaya yang diperlukan serta dapat mengendalikan proyek baik dari segi kinerja, biaya dan waktu. Sistem yang akan dibangun harus dapat diakses dimanapun pengguna berada. Maka dari itu akan dibangun sebuah sistem informasi berbasis web untuk manajemen proyek yang diharapkan dapat membantu permasalahan diproyek PT. DIANTAMA REKANUSA.

Dalam pembuatan penelitian ini, mengacu ke beberapa jurnal yang pertama adalah menentukan kebutuhan tenaga kerja dengan menggunakan 2 metode yaitu NASA-TLX dan perhitungan beban kerja dengan pendekatan sesuai jabatan, dengan metode tersebut mampu menentukan kebutuhan tenaga kerja dengan hasil yang mirip dengan penelitian ini karena sama-sama menggunakan data yang berjalan dengan baik, baik masa lampau atau yang sedang berjalan [1]. Kedua , sama-sama menggunakan metode CPM untuk menentukan pekerjaan yang tidak dapat ditunda dan evaluasi menggunakan EVM, dimana perbedaan dengan penelitian ini hanya dalam metode manajemen risiko karena pada jurnal ini menggunakan metode Probability Impact Matrix (PIM) [2]. Ketiga, metode yang digunakan adalah CPM, EVM dan EMV, dapat dipastikan baik dari hasil atau sistem akan menghasilkan output yang sama menggunakan metode yang sama, perbedaan yang paling terlihat atau perbedaanya dengan penelitian ini adalah tidak adanya penentuan jumlah tenaga kerja dan tidak dapat menyimpulkan atau memantau keuntungan atau kerugian proyek [3]. Keempat, menggunakan metode Precedence Diagram Method (PDM) sebagai metode penentu pekerjaan kritis, sebenarnya PDM dan CPM mirip dalam perhitungannya karena akan menghasilkan keluaran vang sama seperti Earliest Start (ES), Earlist Finish (EF) dan lainnya, namun penggunaan metode Resource Leveling sangat lah baik bagi beberapa perusahaan yang memiliki tenaga kerja terbatas dan kekurangan dari sistem jurnal ini adalah tidak adanya penentuan tenaga kerja sebelum dipakainya Resource Leveling[4]. Terkahir, dengan menggunakan metode Time Study yaitu data perhitungan beban kerja menggunakan batas control atas dan batas control bawah lalu dicari rata-rata untuk menghasilkan performace yang akan digunakan dalam penentuan tenaga kerja, kelebihan pemakaian metode ini adalah tidak memerlukan batasan target yang akan dicapai karena waktu sudah terhitung dari awal, metode ini dalam penggunaan pekerjaan cocok berkelanjutan, namun ada kekurangannya yaitu membutuhkan data dan variable kebutuhan yang sangat banyak supaya metode ini berjalan dengan optimal [5].

### 2. HASIL PENELITIAN

#### 2.1 Metodologi Penelitian

Metode yang digunakan adalah metode penelitian deskriptif. Berikut metodologi penelitian dapat dilihat pada gambar 1.



Gambar 1 Metodologi Penelitian

# 2.2 Analisis Penjadwalan Proyek (Critical Path Method)

Critical Path Method adalah metode untuk menentukan pekerjaan-pekerjaan yang tidak dapat ditinggalkan atau pekerjaan kritis karena akan berpengaruh terhadap perencanaan schedule semula [6].

Tabel 1 Kegiatan Provek

| Tabel 1 Kegiatan Proyek |          |           |         |  |  |  |  |
|-------------------------|----------|-----------|---------|--|--|--|--|
| Vagiatan                | Kode     | Kegiatan  | Durasi  |  |  |  |  |
| Kegiatan                | Kegiatan | Pendahulu | (Hari)  |  |  |  |  |
| Administrasi Dan        |          |           | 154     |  |  |  |  |
| Koordinasi              | A        | -         | Hari    |  |  |  |  |
| Survey Pendahuluan      | В        | -         | 28 Hari |  |  |  |  |
| Survey Penyelidikan     |          |           | 28 Hari |  |  |  |  |
| Tanah (DCP)             | C        | В         |         |  |  |  |  |
| Survey Inventory        |          |           | 28 Hari |  |  |  |  |
| Jalan                   | D        | C         |         |  |  |  |  |
| Survey Topografi        | E        | В         | 56 Hari |  |  |  |  |
| Survey Lalu Lintas      | F        | С         | 35 Hari |  |  |  |  |
| Analisa Data Survey     |          |           | 7 Hari  |  |  |  |  |
| Penyelidikan Tanah      |          |           |         |  |  |  |  |
| (DCP)                   | O        | В         |         |  |  |  |  |
| Analisa Data Survey     |          |           | 7 Hari  |  |  |  |  |
| Inventory Jalan         | G        | C         |         |  |  |  |  |
| Analisa Data Survey     |          |           | 7 Hari  |  |  |  |  |
| Topografi               | H        | D         |         |  |  |  |  |
| Analisa Data Survey     |          |           | 7 Hari  |  |  |  |  |
| Lalu Lintas             | I        | E         |         |  |  |  |  |
| Desain Geometrik        | J        | F         | 7 Hari  |  |  |  |  |
| Desain Perkerasan       | K        | G,H,I,J   | 7 Hari  |  |  |  |  |

| Desain Drainase Dan |    |   | 7 Hari |
|---------------------|----|---|--------|
| Bangunan Pelengkap  | L  | K |        |
| Analisa Volume Dan  |    |   | 7 Hari |
| Harga Satuan        | M  | L |        |
| Presentasi Dan      |    |   | 7 Hari |
| Asistensi Survey    |    |   |        |
| Pendahuluan         | N  | M |        |
| Asistensi Data      |    |   | 7 Hari |
| Survey Topografi    | P  | Е |        |
| Asistensi Data      |    |   | 7 Hari |
| Survey DCP Dan      |    |   |        |
| Test Pit            | Q  | С |        |
| Asistensi Data      |    |   | 7 Hari |
| Survey LHR          | R  | F |        |
| Asistensi Desain    |    |   | 7 Hari |
| Geometrik           | S  | K |        |
| Asistensi Desain    |    |   | 7 Hari |
| Tebal Perkerasan    | T  | L |        |
| Asistensi Volume    |    |   | 7 Hari |
| Pekerjaan Per Km    | U  | N |        |
| Asistensi Harga     |    |   | 7 Hari |
| Satuan Pekerjaan    | V  | U |        |
| Presentasi Draft    |    |   | 7 Hari |
| Laporan Akhir       | W  | Y |        |
| Presentasi Laporan  |    |   | 7 Hari |
| Akhir               | X  | Y |        |
| Laporan Bulanan     | Y  | V | 7 Hari |
| Laporan Pendahuluan | Z  | В | 7 Hari |
| Laporan Akhir       |    |   | 7 Hari |
| Perencanaan         | AA | Y |        |

Digunakan Forward Computation dan Backward Computation untuk menentukan waktu penyelesaian dengan metode CPM [6],[10].

Rumus perhitungan *forward computation* pada aktivitas pekerjaan 1:

$$EF = ES + D$$
  
= 0 + 154 = 154

Rumus perhitungan *backward computation* pada aktivitas pekerjaan 1 :

$$LS = LF - D$$
  
= 154 - 154 = 0

Rumus perhitungan *Total Float* pada aktivitas pekerjaan 2.3 :

$$TF = LF - EF$$
$$= 91 - 84 = 7$$


Berikut seluruh hasil perhitungan dengan CPM dapat dilihat pada table 2.

Tabel 2 Rekapitulasi Hasil Perhitungan CPM

| Aktivitas<br>/<br>Kegiatan | Durasi<br>(Hari)   | ES | EF  | LS | LF  | TF | Status |
|----------------------------|--------------------|----|-----|----|-----|----|--------|
| A                          | 154                | 0  | 154 | 0  | 154 | 0  | Kritis |
| В                          | Hari<br>28<br>Hari | 0  | 28  | 0  | 28  | 0  | Kritis |
| С                          | 28                 | 28 | 56  | 28 | 56  | 0  | Kritis |
|                            | Hari               |    |     |    |     |    |        |
| D                          | 28                 | 56 | 84  | 56 | 91  | 7  | Tidak  |
|                            | Hari               |    |     |    |     |    | Kritis |
| E                          | 56                 | 28 | 84  | 28 | 91  | 7  | Tidak  |
|                            | Hari               |    |     |    |     |    | Kritis |
| F                          | 35                 | 56 | 91  | 56 | 91  | 0  | Kritis |
|                            | Hari               |    |     |    |     |    |        |
| О                          | 7 Hari             | 28 | 154 | 28 | 154 | 0  | Kritis |
| G                          | 7 Hari             | 56 | 98  | 56 | 98  | 0  | Kritis |
| Н                          | 7 Hari             | 84 | 98  | 91 | 98  | 0  | Kritis |
| I                          | 7 Hari             | 84 | 98  | 91 | 98  | 0  | Kritis |
| J                          | 7 Hari             | 91 | 98  | 91 | 98  | 0  | Kritis |

| K  | 7 Hari | 98  | 105 | 98  | 105 | 0 | Kritis |
|----|--------|-----|-----|-----|-----|---|--------|
| L  | 7 Hari | 105 | 112 | 105 | 112 | 0 | Kritis |
| M  | 7 Hari | 112 | 119 | 112 | 119 | 0 | Kritis |
| N  | 7 Hari | 119 | 126 | 119 | 126 | 0 | Kritis |
| P  | 7 Hari | 84  | 154 | 91  | 154 | 0 | Kritis |
| Q  | 7 Hari | 56  | 154 | 56  | 154 | 0 | Kritis |
| R  | 7 Hari | 91  | 154 | 91  | 154 | 0 | Kritis |
| S  | 7 Hari | 105 | 154 | 105 | 154 | 0 | Kritis |
| T  | 7 Hari | 112 | 154 | 112 | 154 | 0 | Kritis |
| U  | 7 Hari | 126 | 133 | 126 | 133 | 0 | Kritis |
| V  | 7 Hari | 126 | 140 | 133 | 140 | 0 | Kritis |
| W  | 7 Hari | 147 | 154 | 147 | 154 | 0 | Kritis |
| X  | 7 Hari | 147 | 154 | 147 | 154 | 0 | Kritis |
| Y  | 7 Hari | 140 | 147 | 140 | 147 | 0 | Kritis |
| Z  | 7 Hari | 28  | 154 | 28  | 154 | 0 | Kritis |
| AA | 7 Hari | 147 | 154 | 147 | 154 | 0 | Kritis |
| BB | 7 Hari | 154 | 161 | 154 | 161 | 0 | Kritis |

Penjelasan dari table diatas, pekerjaan yang berstatus kritis adalah pekerjaan yang tidak dapat ditunda. Berikut adalah hasil perhitungan metode CPM yang dibuat dalam bentuk diagram *Activity on Arrow(AOA)* dapat dilihat pada gambar 2.



Gambar 2 Diagram AOA CPM dengan Jalur Kritis

# 2.3 Analisis Kebutuhan Tenaga Kerja Proyek (Workload Analysis)

Workload Analysis(WLA) adalah metode yang digunakan untuk menetukan kebutuhan tenaga kerja dengan menghitung beban kerja dari setiap pekerjaan sebelumnya yang berjalan dengan baik[7].

Untuk data proyek sebagai acuan yang digunakan dalam metode ini adalah proyek PR-10 dan Proyek PR-11 yang sama-sama dikerjakan pada tahun 2017 dan seluruh pekerjaan selesai dengan baik. Berikut data proyek dapat dilihat pada tabel 3.

Tabel 3 Hasil Rekap Data PR-10 dan PR-11

| Tabel 5 masii Kekap Data FK-10 dali FK-11 |                                    |                        |  |  |  |  |
|-------------------------------------------|------------------------------------|------------------------|--|--|--|--|
| No                                        | Proyek                             | Rata-rata<br>Pek /Hari |  |  |  |  |
| 3                                         | Akumulasi Rata-Rata PR-10 + PR11   |                        |  |  |  |  |
| 3.1                                       | Team Leader                        | 0.635                  |  |  |  |  |
| 3.2                                       | Highway Engineer                   | 0.635                  |  |  |  |  |
| 3.3                                       | Geodetic Engineer                  | 0.635                  |  |  |  |  |
| 3.4                                       | Cost/Quantity Engineer             | 0.635                  |  |  |  |  |
| 3.5                                       | Surveyor BB Test                   | 0.625                  |  |  |  |  |
| 3.6                                       | Surveyor DCP Test                  | 0.625                  |  |  |  |  |
| 3.7                                       | Surveyor Topografi                 | 0.313                  |  |  |  |  |
| 3.8                                       | Surveyor Inventori Jalan           | 0.625                  |  |  |  |  |
| 3.9                                       | Surveyor LHR                       | 0.625                  |  |  |  |  |
| 3.10                                      | Soil Technicion                    | 0.000                  |  |  |  |  |
| 3.11                                      | Operator Computer                  | 0.208                  |  |  |  |  |
| 3.12                                      | Draftman/Acad Computer             | 0.127                  |  |  |  |  |
| 3.13                                      | Labour Survey BB Test dan DCP Test | 0.133                  |  |  |  |  |
| 3.14                                      | Labour Survey Invetory Jalan       | 0.610                  |  |  |  |  |
| 3.15                                      | Labour Suvey Topografi             | 0.112                  |  |  |  |  |
| 3.16                                      | Labour Suvey Penyelidikan Tanah    | 0.000                  |  |  |  |  |
| 3.17                                      | Labour Suvey LHR                   | 0.253                  |  |  |  |  |

Implementasi terhadap kebutuhan tenaga kerja pada proyek PR-12 dengan jarak 100km dan laporan *progres* diminggu ke 12 adalah sebagai berikut.

Bobot pekerjaan = Total Jarak/Persentase Bobot = 100 KM / 6.78 = 14.75 KM

Progres yang sudah dikerjakan(%) = 4.39
Progres dalam Km = 14.75 \* 4.39 = 64.75 KM
Sisa pekerjaan = 100 – 64.75 = 32.25 KM
Dengan menggunakan rumus WLA yaitu
ΣBeban Kerja

 $\frac{-}{Standar}$   $\frac{-}{Kemampuan}$   $\frac{-}{Rata}$   $\frac{-}{Rat$ 

Tabel 4 Hasil Perhitungan WLA

| Tenaga    | Minggu | Rata-          | Sisa        | Target | Total |  |
|-----------|--------|----------------|-------------|--------|-------|--|
| Kerja     | ke-    | rata<br>Pek/Hr | Pek<br>(KM) | (Hr)   | Keb   |  |
|           |        |                | ` ′         |        |       |  |
| Surveyor  | 12     | 0.625          | 35.25       | 7      | 9     |  |
| Inventory |        |                |             |        |       |  |
| Jalan     |        |                |             |        |       |  |
| Labour    | 12     | 0.610          | 35.25       | 7      | 9     |  |
| Inventory |        |                |             |        |       |  |
| Jalan     |        |                |             |        |       |  |

Kesimpulan dari tabel diatas, bahwa kebutuhan tenaga kerja untuk menyelesaikan pekerjaan inventory jalan pada minggu ke-12 dengan target pengerjaan 7 hari dan dengan pekerjaan 35.25 KM adalah 9 orang surveyor dan labour 9 orang.

# 2.4 Analisis Manajmen Risiko (Expected Monetary Value)

Analisis manajemen risiko terdapat 3 tahap yaitu tahap mengidentifikasi resiko, tahap menentukan

nilai probabilitas, tahap menentukan dampak risiko, serta tahap menentukan penanganan terhadap risiko tersebut [8].

#### 2.4.1 Identifikasi Risiko

Tahapan manajemen risiko yang pertama adalah identifikasi risiko yang bertujuan mengidentifikasi risiko-risiko yang kemungkinan akan terjadi pada saat pelaksanaan proyek . Berikut dapat dilihat pada table 5.

Tabel 5 Identifikasi Risiko

| Kode | Jenis Risiko          | Deskripsi Risiko                                                                                      |
|------|-----------------------|-------------------------------------------------------------------------------------------------------|
| R1   | Estimasi              | Jadwal pekerjaan tidak sesuai                                                                         |
|      |                       | dengan perencanaan                                                                                    |
| R2   |                       | Biaya tidak sesuai dengan perencanaan                                                                 |
| R3   | Personal              | Pekerja yang tidak dapat hadir<br>dilapangan bisa sakit , izin, dan<br>lainnya                        |
| R4   |                       | Pekerja yang belum memahami pekerjaan dibidangnya                                                     |
| R5   | Alat<br>Penunjang     | Kerusakan alat ( Alat survey, alat kantor dan mobilisasi)                                             |
| R6   | Konstruksi            | Alat hilang karena dicuri dan sebagainya                                                              |
| R7   | 1                     | Terlambat pengiriman dari supplier                                                                    |
| R8   | Eksternal             | Bencana alam (Banjir, longsor dan lainnya yang menyebabkan pekerjaan proyek tidak dapat dilaksanakan) |
| R9   | Internal              | Kesalahan perhitungan                                                                                 |
| R10  | Keselamata<br>n Kerja | Kecelakaan tenaga kerja                                                                               |

#### 2.4.2 Penilaian Risiko

Selanjutnya risiko ditentukan nilai probabilitas dan dampak biaya yang didapatkan dari hasil wawancara dengan Penanggung Jawab Teknis pihak perusahaan.

Tabel 6 Penilaian Risiko

| Kode | Probabilitas (%) | Konsekuensi (Rp.) | EMV         |
|------|------------------|-------------------|-------------|
| R1   | 50               | 20.000.000        | -10.000.000 |
| R2   | 40               | 10.000.000        | -4.000.000  |
| R3   | 5                | 3.000.000         | -150.000    |
| R4   | 10               | 4.000.000         | -400.000    |
| R5   | 10               | 20.000.000        | -2.000.000  |
| R6   | 5                | 3.000.000         | -150.000    |
| R7   | 5                | 3.000.000         | -150.000    |
| R8   | 15               | 8.500.000         | -1.275.000  |
| R9   | 30               | 4.000.000         | -1.200.000  |
| R10  | 5                | 2.000.000         | -100.000    |

Seperti yang diilihat dari table diatas diketahui seberapa besar biaya dari masing-masing risiko. Oleh karena itu, perusahaan harus mengeluarkan biaya tersebut jika salah satu dari risiko tersebut muncul pada saat pelaksanaan proyek berlangsung. Biaya yang digunakan untuk menangani risiko tersebut berasal dari biaya cadangan perusahaan .

# 2.4.3 Penanganan Risiko

Setelah tahapan penilaian risiko, maka dilakukan mitigasi atau respon penanganan terhadap risiko, Berikut adalah mitigasi untuk masing-masing risiko dapat dilihat pada tabel 7.

**Tabel 7 Penanganan Risiko** 

| Kode | Deskripsi Risiko                            | Penanganan Risiko              |  |  |  |  |  |  |
|------|---------------------------------------------|--------------------------------|--|--|--|--|--|--|
| R1   | Jadwal pekerjaan Melalui Penanggung Jawab T |                                |  |  |  |  |  |  |
|      | tidak sesuai                                | memanfaatkan tenaga kerja yang |  |  |  |  |  |  |
|      |                                             | ada dengan menambah jam kerja  |  |  |  |  |  |  |

|     | dengan            | dan pemahaman tentang proyek                                      |
|-----|-------------------|-------------------------------------------------------------------|
|     | perencanaan       | yang dikerjakan                                                   |
| R2  | Biaya tidak       | Melalui Penanggung Jawab Teknis                                   |
|     | sesuai dengan     | memanfaatkan tenaga kerja yang                                    |
|     | perencanaan       | ada dengan harapan biaya tidak                                    |
|     |                   | terus membengkak                                                  |
| R3  | Pekerja yang      | Penanggung Jawab Teknis dan                                       |
|     | tidak dapat hadir | Team Leader memberikan                                            |
|     | dilapangan bisa   | pemahaman lebih dan menjaga                                       |
|     | sakit , izin, dan | komunikasi dengan pekerja                                         |
|     | lainnya           |                                                                   |
| R4  | Pekerja yang      | Melalui Penanggung Jawab Teknis                                   |
|     | belum             | memanfaatkan tenaga kerja yang                                    |
|     | memahami          | ada dengan menambah jam kerja                                     |
|     | pekerjaan         | dan pemahaman tentang proyek                                      |
|     | dibidangnya       | yang dikerjakan                                                   |
| R5  | Kerusakan alat (  | Team leader menggunakan alat                                      |
|     | Alat survey, alat | seadanya terlebih dahulu, dengan                                  |
|     | kantor dan        | pertimbangan apakah bisa                                          |
|     | mobilisasi)       | mengejar target pekerjaan serta                                   |
|     |                   | membuat laporan kepada                                            |
|     |                   | Penanggung Jawab Teknis dan<br>Staff Administrasi Lapangan        |
|     |                   | mengenai kerusakan alat untuk                                     |
|     |                   | menyewa atau me-replace alat                                      |
|     |                   | yang rusak kepada supplier yang                                   |
|     |                   | menyewakan.                                                       |
| R6  | Alat hilang       | Team leader menggunakan alat                                      |
|     | karena dicuri dan | seadanya terlebih dahulu, dengan                                  |
|     | sebagainya        | pertimbangan apakah bisa                                          |
|     |                   | mengejar target pekerjaan serta                                   |
|     |                   | membuat laporan kepada                                            |
|     |                   | Penanggung Jawab Teknis dan                                       |
|     |                   | Staff Administrasi Lapangan                                       |
|     |                   | mengenai kerusakan alat untuk                                     |
|     |                   | menyewa atau me-replace alat                                      |
|     |                   | yang rusak kepada supplier yang                                   |
|     |                   | menyewakan.                                                       |
| R7  | Terlambat         | Staf administrasi lapangan                                        |
|     | pengiriman dari   | menghubungi terus bagian                                          |
|     | supplier          | supplier, apabila ada yang bias                                   |
|     |                   | dikerjakan dalam proyek, maka                                     |
| R8  | Bencana alam (    | pekerjaan tersebut didahulukan.<br>Team Leader mengarahkan kepada |
| No  | Banjir, longsor   | semua tenaga kerja yang berada                                    |
|     | dan lainnya yang  | dilapangan untuk evakuasi,                                        |
|     | menyebabkan       | mencari lokasi yang tidak terkena                                 |
|     | pekerjaan proyek  | dampak , menghentikan terlebih                                    |
|     | tidak dapat       | dahulu pekerjaan proyek dan                                       |
|     | dilaksanakan)     | menunggu instruksi selanjutnya.                                   |
| R9  | Kesalahan         | Team Leader dan tenaga kerja                                      |
|     | perhitungan       | yang bersangkutan mengerjakan                                     |
|     |                   | ulang dan membenarkan(revisi)                                     |
|     |                   | perhitungan yang salah selama                                     |
|     |                   | waktu yang direncanakan tidak                                     |
|     |                   | menghambat pekerjaan proyek                                       |
|     |                   | lainnya.                                                          |
| R10 | Kecelakaan        | Tenaga kerja yang terlibat                                        |
|     | tenaga kerja      | dilapangan membantu tenaga kerja                                  |
|     |                   | yang terluka, mengobati dengan                                    |
|     |                   | P3K apabila luka ringan, dan                                      |
| 1   | 1                 | melaporkan kepada Team Leader                                     |
|     |                   | untuk upaya lebih lanjut.                                         |

# 2.5 Analisis Pengendalian Proyek (*Earned Value Management*)

Analisis pengendalian proyek berisikan langkah untuk membantu dalam melakukan evaluasi proyek dengan mengendalikan biaya dan waktu proyek. Pengendalian proyek menggunakan metode *Earned Value Management* [9].

#### 2.5.1 Analisis Evaluasi Proyek

Analisis evaluasi proyek menggunakan 3 indikator untuk penilaiannya yaitu *Planned Value* (PV), *Earned Value* (EV), dan *Actual Cost* (AC). Sedangkan untuk pengendalian proyek berdasarkan waktu dan biaya menggunakan beberapa varian yaitu deviasi antara EV dan AC menggunakan perhitungan *Cost Variance* (CV), perhitungan deviasi antara PV dan EV mengghunakan *Scheduling Variance* (SV), perhitungan kinerja berdasarkan waktu menggunakan *Schedule Performance Index* (SPI), perhitungan kinerja berdasarkan biaya menggunakan *Cost Performance Index* (CPI), perhitungan estimasi biaya menggunakan *Estimate at Completion* (EAC) dan perhitungan estimasi waktu menggunakan *Estimate to Complete* (ETC) [9].

Tabel 8 Rekapitulasi Perhitungan EVM

| Minggu<br>ke- | Anali             | Analisis Varian |                |                | Analisis Varian Analisis Kerja |                |                     | s Kerja | Analisis Estimasi |  |  |
|---------------|-------------------|-----------------|----------------|----------------|--------------------------------|----------------|---------------------|---------|-------------------|--|--|
|               | Waktu (SV)        |                 | cv             | Waktu<br>(SPI) | Biaya<br>(CPI)                 | Waktu<br>(ETC) | Biaya (EAC)         |         |                   |  |  |
| 3             | Rp 18,142,824.75  | Rp              | -3,353.30      | 1.521          | 1.000                          | 15.120         | Rp 1,457,255,000.00 |         |                   |  |  |
| 4             | Rp 89,839,770.75  | Rp              | 13,592.70      | 3.581          | 1.000                          | 6.424          | Rp 1,457,255,000.00 |         |                   |  |  |
| 8             | Rp -50,348,160.25 | Rp              | 5,432.45       | 0.596          | 1.000                          | 38.584         | Rp 1,457,255,000.00 |         |                   |  |  |
| 9             | Rp -17,109,630.96 | Rp              | -17,167,859.55 | 0.861          | 0.860                          | 26.723         | Rp 1,693,759,471.00 |         |                   |  |  |
| 12            | Rp -45,963,279.96 | Rp              | -1,543,666.05  | 0.595          | 0.978                          | 38.676         | Rp 1,490,602,721.97 |         |                   |  |  |
| 13            | Rp -1,517,002.46  | Rp              | 30,646.45      | 0.970          | 1.001                          | 23.715         | Rp 1,456,348,031.96 |         |                   |  |  |
| 14            | Rp 3,205,961.00   | Rp              | -7,217.80      | 1.135          | 1.000                          | 20.256         | Rp 1,457,255,000.00 |         |                   |  |  |
| 15            | Rp 3,788,863.00   | Rp              | -625,629.80    | 1.193          | 0.974                          | 19.272         | Rp 1,496,259,351.62 |         |                   |  |  |
|               |                   |                 |                |                |                                |                |                     |         |                   |  |  |

Berdasarkan hasil akhir perhitungan menggunakan metode EVM diatas, dapat ditarik kesimpulan sebagai berikut:

Total Waktu Rencana = 23 Minggu Total Waktu Aktual = 23 Minggu

BAC = 1,457,255,000.00

PV = 1,457,255,000.00 AC = 1,476,410,000.00

CV = -19,155,000.00

Sisa waktu = 23 - 23 = 0 Minggu.

Sisa biaya yang dikeluarkan

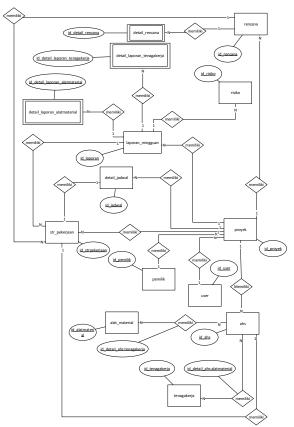
= 1,476,410,000 - 1,457,255,000

= Rp. -19,155,000.00

Pada proyek diatas memiliki sisa waktu selama 0 minggu, dapat ditarik kesimpulan bahwa pengerjaan proyek sesuai dengan yang telah direncanakan sebelumnya. Untuk sisa biaya proyek adalah sebesar Rp. -19,155,000.00, artinya biaya penyelesaian proyek melebihi dari yang telah direncanakan.

### 2.6 Analisis Kebutuhan Pengguna

Analisis pengguna yang dibutuhkan untuk menggunakan sistem dapat dilihat pada tabel berikut 12.


Tabel 9 Analisis Pengguna yang Dibutuhkan

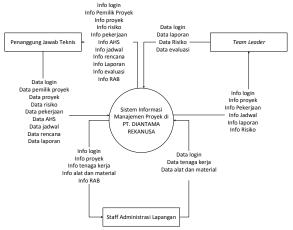
| Pengguna                      | Hak Akse                                                                                                      | s | Tingkat<br>Keterampilan                                                                  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------|
| Penanggung<br>Jawab<br>Teknis | Mengelola<br>proyek<br>Mengelola<br>pekerjaan<br>Mengelola data<br>Melihat data R<br>Mengelola<br>penjadwalan |   | Memahami<br>pemakaian aplikasi<br>berbasi web dan<br>memahami konsep<br>manajemen proyek |

|              | Mengelola data<br>risiko<br>Mengelola data<br>rencana mingguan<br>Mengelola data<br>evaluasi |                                        |
|--------------|----------------------------------------------------------------------------------------------|----------------------------------------|
| Team         | Melihat data proyek                                                                          | Memahami                               |
| Leader       | Mengelola laporan mingguan                                                                   | pemakaian aplikasi<br>berbasis web dan |
|              | Melihat data evaluasi                                                                        | memahami konsep                        |
|              |                                                                                              | manajemen proyek.                      |
| Staf         | Melihat data proyek                                                                          | Memahami                               |
| Administrasi | Mengelola data                                                                               | pemakaian aplikasi                     |
| Lapangan     | kebutuhan alat dan<br>material                                                               | berbasis web                           |
|              | Mengelola tenaga                                                                             |                                        |
|              | kerja                                                                                        |                                        |
|              | Melihat RAB                                                                                  |                                        |

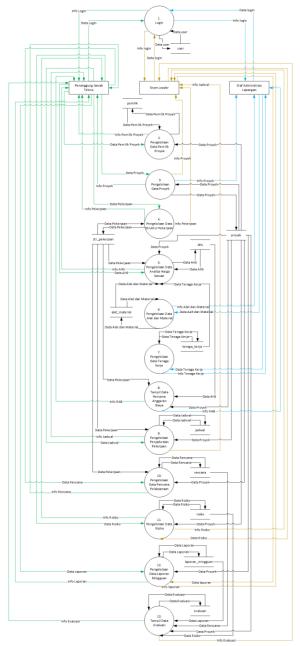
#### 2.7 Analisis Basis Data

Analisis basis data adalah langkah analisis untuk menggambarkan atau mendesain sistem yang akan dibangun dalam bentuk hubungan antar entitas yang ada dalam sistem informasi manajemen proyek di PT. DIANTAMA REKANUSA. Berikut hasil analisis basis data dalam bentuk *Entity Relational Diagram* (ERD) dapat dilihat pada gambar 3.




Gambar 3 ERD Sistem Informasi Manajemen Proyek PT. Diantama Rekanusa

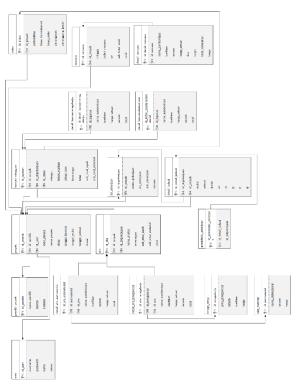
Tabel 10 Atribut Entitas pada ERD


| No | Nama Entitas               | Atribut                                                                        |  |
|----|----------------------------|--------------------------------------------------------------------------------|--|
| 1  | user                       | id_user, username, nama, password,status,email                                 |  |
| 2  | pemilik                    | id_pemilik, nama, kontak, instansi                                             |  |
| 3  | proyek                     | id_proyek, kode_proyek, nama_proyek, biaya, tanggal_mulai,                     |  |
|    |                            | tanggal_mulai, tanggal_selesai,durasi                                          |  |
| 4  | str_pekerjaan              | id_strpekerjaan, nama_pekerjaan, no_pekerjaan, ket                             |  |
| 5  | alat_material              | id_material, nama_alatmaterial, satuan,harga                                   |  |
| 6  | ahs                        | id_ahs, nama_analisa, ket, total,sub_total_material, sub_total_upah,           |  |
| 7  | detail_ahs_tenagakerja     | id_detail_ahs_tenagakerja, nama_sumberdaya, koefisien, satuan,                 |  |
|    |                            | harga_satuan, harga                                                            |  |
| 8  | detail_ahs_alatmaterial    | id_detail_ahs_alatmaterial,nama_sumberdaya, koefisien, satuan                  |  |
|    |                            | ,harga_satuan, harga                                                           |  |
| 9  | detail_jadwal              | id_detail_jadwal, mulai, selesai, durasi, es, ef, ls, lf, tf, pendahulu        |  |
| 10 | pendahulu_pekerjaan        | id_pendahulu_pekerjaan_id_strpekerjaan                                         |  |
| 11 | tenaga_kerja               | id_tenagakerja, jenis_pekerja, satuan, harga, koefisien                        |  |
| 12 | risiko                     | <u>id_risiko</u> , nama_risiko, probabilitas, biaya_konsekuensi, biaya_risiko, |  |
|    |                            | penanganan                                                                     |  |
| 13 | rencana                    | id_rencana, minggu, bobot_rencana, pv, sub_total_upah, total                   |  |
| 14 | detail_rencana             | Id_detail_rencana_nama_sumberdaya, koefisien, satuan,                          |  |
|    |                            | harga_satuan,sisa,target, total_kebutuhan, harga                               |  |
| 15 | laporan_mingguan           | id_laporan, minggu, bobot_realisasi, total, keterangan, sub_total_upah,        |  |
|    |                            | sub_total_material, aktual_cost                                                |  |
| 16 | detail_laporanalatmaterial | id_detail_laporantenagakerja, nama_sumberdaya, koefisien, satuan,              |  |
|    |                            | harga_satuan, harga                                                            |  |
| 17 | detail_laporantenagakerja  | id_detail_laporantenagakerja, nama_sumberdaya, koefisien, satuan,              |  |
|    |                            | harga_satuan, harga                                                            |  |

### 2.9 Analisis Kebutuhan Fungsional

Analisis kebutuhan fungsional adalah menggambarkan proses kegiatan yang akan diterapkan dalam sistem dan menjelaskan kebutuhan yang diperlukan agar sistem berfungsi dengan baik dan sesuai dengan kebutuhan.




**Gambar 4 Diagram Konteks** 



Gambar 5 DFD Level 1

### 2.9 Perancangan Sistem

Perancangan Sistem adalah representasi, perencanaan, dan realisasi sketsa atau pengaturan dari beberapa sistem yang berbeda menjadi kesatuan yang utuh. Langkah ini termasuk mengkonfigurasi komponen perangkat lunak dan perangkat keras suatu sistem.



Gambar 6 Skema Relasi

# 2.9 Implementasi Sistem

Implementasi sistem informasi manajemen proyek di PT. Diantama Rekanusa dengan menggunakan metode-metode yang telah digunakan dapat dilihat pada gambar 7 dan gambar 8.



**Gambar 7 Halaman Hasil Perhitungan CPM** 



Gambar 8 Halaman Evaluasi EVM

### 2.10 Pengujian

### 2.10.1 Pengujian Black Box

Pengujian sistem pada penelitian ini adalah dengan menggunakan metode pengujian blackbox, yaitu dengan cara menguji bekerjanya semua yang ada pada sistem untuk menentukan apakah fungsi tersebut telah bekerja sesuai yang diharapkan atau tidak [11]. Kesimpulan dari pengujian *blackbox* pada penelitian ini adalah sistem akan menampilkan hasil yang diharapakan jika pengguna memasukkan data yang benar, dan akan menampilkan peringatan bila pengguna salah memasukan data. Namun dari segi fungsi, ada yang belum berfungsi, yaitu *node* atau diagram jalur kritis tidak dapat ditampilkan.

#### 2.10.2 Pengujian Beta

Pengujian beta merupakan pengujian yang dilakukan kepada End-User atau pengguna akhir dengan cara langsung diperusahaan .Berdasarkan hasil jawaban dari narasumber yaitu Penanggung Jawab Teknis, Team Leader, serta Staff Administrasi Lapangan terhadap pertanyaan yang diajukan pada pengujian beta, maka dapat diambil kesimpulan bahwa sistem yang dibangun dirasa cukup mudah untuk digunakan oleh Penanggung Jawab Teknis, Team Leader, serta Staff Administrasi Lapangan dan fungsinya pun sudah sesuai dengan tujuan yang sudah ditentukan sebelumnya, dimana sistem dapat menangani manajemen proyek mulai dari mengelola jadwal, menentukan kebutuhan tenaga kerja proyek, mengidentifikasi risiko dan sistem mengendalikan biaya dan waktu proyek..

#### 3. PENUTUP

### 3.1 Kesimpulan

Kesimpulan yang dapat diambil dari penelitian ini adalah sistem yang dibangun dapat membantu Penanggung Jawab Teknis dalam membuat penjadwalan dengan keterikatan antar pekerjaan dan menentukan pekerjaan mana saja yang tidak boleh terlambat , sistem dapat menentukan kebutuhan tenaga kerja proyek apabila terjadi kekurangan atau Penanggung Jawab Teknis ingin menambah pekerja agar efisien antara waktu dan biaya, sistem dapat mengidentifikasi kemungkinan terjadinya risiko pada proyek serta perkiraan biaya yang akan muncul pada saat proyek, dan sistem dapat melakukan pengendalian biaya dan waktu pada proyek.

# 3.2 Saran

Adapun saran untuk sistem informasi manajemen proyek ini adalah untuk menyempurnakan fitur-fiturnya supaya berjalan dengan optimal dan dapat digunakan sesuai dengan tujuannya.

### **DAFTAR PUSTAKA**

[1] R. M. Arsi and S.G. Partiwi, "Analisis Beban Kerja untuk Menentukan Jumlah Optimal Karyawan dan Pemetaan Kompetensi Karyawan Berdasar Pada Job Description (Studi Kasus: Jurusan Teknik Industri, ITS,

- Surabaya)" Jurnal Teknik ITS, vol.1, no.1, pp. 526-529, 2012.
- [2] D. Aprianto, "Sistem Informasi Manajemen Proyek PT. Yudha Perkasa Utama" Komputa, 2018.
- [3] I. S. Maulana, "Sistem Informasi Manajemen Proyek Pada CV. Abi Zakira Prima" Komputa, 2018.
- [4] C.F.M. Tantrika ,I. Bastian and S. Sugiono, "Optimisasi Perencanaan Proyek Pembangunan Perpustakaan Menggunakan Pdm Dan Resource Leveling (Studi Kasus Proyek Perpustakaan Oleh Cv. Maju Indah)", Jurnal Rekayasa dan Manajemen Sistem Industri, vol.3, no.1, pp.75-84, 2015.
- [5] F. Muljadi , D.I. Rinawati and D.P. Sari, "Penentuan Waktu Standar Dan Jumlah Tenaga Kerja Optimal Pada Produksi Batik Cap (Studi Kasus: Ikm Batik Saud Effendy, Laweyan)", Jurnal Teknik Industri, vol.7, no.3, pp.143-150, 2012.
- [6] I. Widiasanti and Lenggogeni, Manajemen Konstruksi, Jakarta , Rosda, 2013
- [7] Keputusan Menteri PANegara No. KEP/75/M.PAN/7/2004 tentang Pedoman Perhitungan Kebutuhan Pegawai Berdasarkan Beban Kerja Dalam Rangka Penyusunan Formasi Pegawai Negeri Sipil. 2004. Jakarta: Kementrerian Pendayagunaan Aparatur Negara
- [8] Project Management Institute, A GUIDE TO THE PROJECT MANAGEMENT BODY OF KNOWLEDGE (PMBOK Guide), USA ,Project Management Institute, 2013.
- [9] Sufa'atin, "Penerapan Metode Earned Value Management (EVM) Dalam Pengendalian Biaya Proyek" Prosiding SNATIF, pp. 311-321, 2017.
- [10] G.T. Mardiani, "Construction industry project planning information system", IOP Science, vol. 407, no. 93,pp.012-093, 2018.
- [11] Ladjamudin, AL-Bahra, Rekayasa Perangkat Lunak, Tangerang Graha Ilmu, 2018.