THE EMPLOYEE ATTENDANCE SYSTEM DESIGN USING RFID AND FACE RECOGNITION AT PT. METRO PERMATA RAYA

Moh Yunus¹, Dedeng Hirawan²

^{1,2} Informatic Engineering - Indonesia Computer University
 Dipatiukur Street 112 -116, Coblong, Lebak Gede, Bandung City, West Java 40132
 E-mail : jpryunus@gmail.com¹, dedeng@email.unikom.ac.id²

ABSTRACT

Attendance is one form of employee discipline that also helps to increase motivation in every activity of the company and is one of the professional benchmarks of employees. The purpose of this research is to avoid fraud committed by employees in attendance, avoiding lost or damaged presence data, and facilitating the HRD to process attendance data to avoid mistakes in calculating the amount of Attendance and processing of employee attendance data in charge of three running housing projects. The research method used in this research is descriptive. The method of software development used is a method of the prototype with the communication process, quick plan, modeling quick design, construction of prototype and development delivery and feedback. From the results of the tests that have been done, the system can prevent the occurrence of cheating in the employee attendance process because the attendance process can be done only by the employee itself using the own RFID and facial recognition based on Nip. The employee attendance system can also help the HRD to minimize the error in the recapitulation of the attendance report. The results of attendance testing showed that RFID card S50 and RFID Reader RC-522 with a frequency of 13.56 MHz can be detected with a maximum distance of 2cm, and testing the accuracy of facial recognition using three face training data has a level Highest accuracy rate of 90.2%.

Keywords: Attendance, Employee, Face Recognition, Eigenface

1. INTRODUCTION

Attendance is one form of employee discipline that also helps to increase motivation in every activity of the company, Attendance is also one of the professional benchmarks of employees [1]. The company uses attendance to calculate the list of present employees of the company.

At PT Metro Permata Raya still, use an attendance system in the form of attendance check-lock and attendance card. The obstacles experienced in using this tool is not able to detect the cheating of employees in attendance process using absent to his friend, this will certainly give the data that is not suitable to the company and employees can come and Not at the designated hour [2]. At PT Metro Permata Raya There are 1 to 5 employees who are cheating in the attendance process, and for a month there is an average of 10% of the attendance process that is done by entrusting the friend. PT Metro Permata Raya which suffered damage or loss of attendance card between 1 to 10 pieces in a year or there is 3% of the number of attendance cards for a year lost or damaged, therefore the company must reconfirm to the Employee to complete the damaged or missing attendance data. The process of calculating employee attendance data that is done manually has many shortcomings, such as mistakes in entering employee attendance data and lack of efficiency and effectiveness in the processing of attendance data. Processing attendance data of employees of PT Metro Permata Raya who served in 3 different project offices require management at the head office to ask for employee attendance data in each project, it causes lack of Time efficiency in processing attendance data.

To avoid the occurrence of mistakes or fraud collection of employee attendance, on the final task is made an attendance system by utilizing RFID technology as input data employee attendance and use facial recognition to force Employees who conduct fraud in order to act honestly in the absence of attendance, so that the attendance data will correspond with the actual admission hours and hours of the employee. Data collection is done automatically by using Raspberry-Pi that is connected to the WiFi modem so that the data can be integrated online with a database on the Web server, so when employees do attendance process, the data will go to Databases and data can be processed on the web to facilitate the recapitulation of employee attendance data.

The objectives that will be achieved in this study include:

- 1. Avoid cheating by employees in the attendance process.
- 2. Avoiding lost or damaged employee attendance data
- 3. Facilitate the HRD in the processing of employee attendance data to avoid mistakes in calculating

the number of employee attendance and processing of attendance data of employees in charge of 3 housing projects in progress.

2. FOUNDATION THEORY

2.1 Internet of Things

The Internet of Things (IoT) is a technology that allows the control, communication, and collaboration between various types of hardware over the Internet, IoT emerged as a form of change and development of information and network technologies. IoT is not only about the remote control, but IoT is also related to how processes for data sharing, virtualizing everything on the Internet and other forms [3].

2.2 Raspberry Pi

Raspberry Pi is a small computer and has 2 models namely Model A and Model B. The main function of Raspberry Pi is as a computer that allows browsing, create Lapran, presentation, play games, or just listen Music and watching movies. Raspberry Pi uses Python as its official programming language [4]. Raspberry Pi does not require large electrical energy to operate. We can power the electrical power with a computer in the house that needs electrical power starting from 200 watts [5]. Images from the Raspberry Pi board can be viewed in Figure 1. Raspberry Pi 3 Model B.

Figure 1. Raspberry Pi 3 Model B

2.3 RFID

RFID (Radio Frequency Identification) is a digital technology in the form of tag and reader based on the wireless network (Radio wave) for the data transfer process, object identification and other electronic information [6]. The RFID system consists of four components, such as can be seen in Figure 2. RFID system[7].

Figure 2. RFID system

2.4 Face recognition

Face recognition is a computer or mobile application where the app runs automatically to identify or verify someone from a digital image sourced from a video. Facial recognition is divided into 2 types, namely the future based system and image-based system. In a future based system use the extracted features of the face components (eyes, nose, mouth, etc.) which are then connected and modeled geometrically. While the image-based system uses raw information from the image pixels represented in certain methods, such as the principal component analysis (PCA), the wavelet transform is then used for the classification of imagery [8].

2.5 Eigenface Algorithm

Eigenface is a collection of eigenvector used for computer vision on human face recognition, taken from statistical analyses of many facial images. Eigenface is one of the facial recognition algorithms based on the Principal Component Analysis (PCA) developed at MIT. Overall the algorithm is quite simple, the training image is represented in a vector combination merged into a single matrix [8].

The eigenface algorithm starts with a column matrix of the face that is included in the database. The average vector image (mean) of a column matrix is calculated by dividing the number of images stored in the database. To generate the Eigenface value a set of digital imagery from a human face is taken at the same lighting condition and then normalized and processed at the same resolution e.g. (M x N).

3. RESEARCH METHODS

The research method used in this research is descriptive. A descriptive research method is a method aimed at making descriptions or representations in researching an object, a set of conditions, a system of thought, or a class of events at present [9].

1.1 Metode Prototype

The method used in the development of this software is a method of the prototype because in the creation of the attendance system is very high user engagement so that the system can comply with the needs of users [10]. The following processes are as follows:

a. Communication

In the Communication phase, we analyze the needs of the system by collecting the data by conducting interviews with PT Metro Permata Raya, as well as collecting additional data on both journals and books.

b. Quick Plan

This stage is the advanced stage of the Communication Process. At this stage generated data relating to the user's wishes in the development of the system, namely an attendance system using RFID that can avoid the cheating by employees, and can process attendance data from All branches of the project online.

c. Modeling Quick Design

At this stage of modeling began to conduct a system design according to the needs of PT Metro Permata Raya which can be estimated before the coding process. The modeling process is done by designing data structures, software architecture, interface representation, and unified Modeling Language (UML).

d. Construction of prototype

After the modeling stage, next is the Construction stage. At this stage start coding the Web build according to the design at the modeling stage, coding the Raspberry pi to set the function on the RFID Reader as a tool for the attendance process, inserting a facial recognition algorithm By using the camera, as well as connecting the Raspberry pi to the Internet so that data can be integrated online with a Web server. After the encoding is completed, testing of the system that has been built. The purpose of testing is to find errors against the system to be repaired.

e. Deployment Delivery & Feedback

This stage can be said to be final in making a system. After conducting analysis, design, and coding, the finished system will be used by the user. Then the system that has been built maintenance periodically.

The prototype model depiction can be seen in Figure 3. Prototype Model.

Figure 3. Prototype Model

4. ANALYSIS AND PLANNING

4.1 Problem analysis

The attendance process at PT Metro Permata Raya is currently still using the attendance system in the form of check-lock attendance and attendance card. The obstacles experienced in using this tool are as follows:

1. The attendance check-lock tool can not detect the cheating of employees in the attendance process using absent from his friend. At PT Metro Permata Raya There are 1 to 5 employees who are cheating in attendance process, and for a month

there is an average of 10% of attendance process performed by employees by entrusting his friend.

- 2. Attendance cards are used to perform a sheet of paper that allows tears or damage if exposed to water, even lost. At PT Metro Permata Raya, the damage or loss of attendance card between 1 to 10 pieces in a year, or as much as 3% of the number of attendance cards for a year lost or damaged, therefore the company must re-confirm to the employee to complete the damaged or missing attendance data.
- 3. Lack of time efficiency in processing attendance data because the process of calculating employee attendance data is done manually by calculating attendance data on the attendance cards, then the presence data is typed on the computer. In addition, the head office should ask for employee attendance data in 3 ongoing projects.

4.2 Analysis of ongoing procedures

Based on the results of observations and interviews with the HRD parties are obtained the following procedures:

1. Employee Attendance procedure

Figure 4. Employee Attendance procedure

4.3 Analysis of new procedures

1. New procedure Attendance Process

Figure 5. New procedure Attendance Process

4.4 Algorithm analysis

The algorithm of the attendance system to do the attendance process is as follows:

1. RFID Scan

2. RFID reader on Raspberry Pi will read the RFID and NIP Id

3. Facial recognition process, face recognition process will match the face of the Raspberry Pi video camera with the face training data that has been stored if the data found it will be obtained NIP according to the data face.

4. NIP of the results of facial recognition will be matched with NIP on the RFID, if NIP the same then the attendance process succeeded if the NIP is not the same then the process of attendance failed.

5. If the absence process succeeds, the system will create a TXT file containing the JSON code as a backup of attendance data of the new employee who did the attendance process.

6. The system calls the backup JSON file which contains the date and time attendance data based on the NIP to be sent to the server and stored into the database.

4.5 Facial recognition procedure

1. Convert RGB image to grayscale

The phase of transforming the RGB image into a grayscale image aims to simplify the image model. The three layers contained in the color image, Red, Green, and Blue are converted into one grayscale layer. To change the color image that has the values of the individual R, G, and B become grayscale image by dividing the number of the three layers, with the equation below:

$$f_0(x, y) = \frac{f_i^{R}(x, y) + f_i^{G}(x, y) + f_i^{B}(x, y)}{3}$$
(1)

For example suppose we have a face image with a size of 30x30 pixels with RGB values can be seen in Figure 6. A 30x30 pixel RGB face image.

Figure 6. 30x30 pixel RGB face image

The matrix obtained from a 30x30 pixel RGB face image above is as follows :

For RGB color conversion above to grayscale using the following equation :

$$f_0(0,0) = \frac{239 + 237 + 222}{3} = 232,67$$

$$f_0(0,1) = \frac{245 + 243 + 228}{3} = 238,67$$

$$f_0(0,2) = \frac{244 + 244 + 232}{3} = 240$$

$$f_0(29,29) = \frac{43 + 39 + 40}{3} = 40,67$$

Calculate each RGB pixel with the equation above from the pixel (0.0) to the last pixel, then round the result of the calculation above if the result is decimal, it will form the grayscale image and the grayscale image matrix as follows:

Figure 8. 30x30 pixel grayscale face image

And the matrix of grayscale face image above is as follows:

Figure 9. 30x30 pixel grayscale face image matrix

2. Eigenface algorithm

Eigenface consists of an eigenvector set representing the characteristics of a saved face image. Eigenface was first developed by Mathew Turk and Alex Pentland from Vision and Modelling Group, The Media Laboratory, Massachusetts Institute of Technology.

Each face image is the same size as 112x92 pixel, then the resulting matrix set is 112x92. Thus acquired a set of facial imagery in the form of matrices.

Supposing there is a face image $I = \{I1, I2, I3...\}$ The Im} that every 3x3 face image is transformed into a 9x1 column vector of Γi.

Supposing there is a face image $I = \{I_1, I_2, I_3..., I_m\}$ that every 3x3 face image is transformed into a 9x1 column vector of Γ_i .

The stages of the PCA method for calculating eigenface are as follows:

1. Prepare training data by creating a set of S consisting of all training data.

> $S = (\Gamma_1, \Gamma_2, \ldots, \Gamma_M)$ (2)

2. 2. Calculate the average face image of the training data.

$$\Psi = \frac{1}{M} \sum_{n=1}^{M} \Gamma_n \tag{3}$$

The average facial image describes the characteristics of the same face, e.g. position of the nose and mouth eyes.

3. Calculate the difference of each face image is reduced by the average face image. $\phi_i = \Gamma_i - \Psi$ (4)

where
$$i = 1, 2, 3, ..., M$$
. This process removes the same traits on each face image.

By removing the same characteristics of each face image, it will be obtained matrix with a large variety.

(5)

4. Calculate the Matrix Covariant $C = \frac{1}{2} \sum_{n=1}^{M} \phi_n \phi_n^T = AA^T$

$$= \frac{1}{M} \sum_{n=1}^{M} \Phi_n$$

The Covariant matrix is used to compare each face image with other imagery contained in the training data.

5. Calculate eigenvalue (λ) and eigenvector (v) of the matrix covariant (C)

> $C \nu_i = \lambda_i \nu_i$ (6)

6. After eigenvector (v) is obtained, then calculate Eigenface (μ)

$$\mu_{i} = \sum_{k=1}^{M} v_{ik} \phi_{k}$$
(7)
Facial recognition Stage

Apply the way at the first stage on the Eigenface calculation to get the Eigen value from the new face image

$$\mu_{new} = v (\Gamma_{new} - \Psi)$$
(8)

$$\Omega = [\mu_1, \mu_2, \mu_3, ..., \mu_M]$$
(9)

(9)Use the Euclidean distance method to find the shortest distance between the Eigen value of the training image data and the new face image.

$$\varepsilon_k = \|\Omega - \Omega_k\| \tag{10}$$

4.6 System Architecture Analysis

Analysis of system architecture is a process to describe the physical system to be built, here is the architecture of employee attendance system:

Figure 10. Employee Attendance System Architecture

4.7 Data Communication Analysis

Data communication is a very important part, if not using data communication, then the attendance system is not able to run according to the needs. Data communication used in this attendance system is using TCP/IP with data packet transmitted using the POST method, while data request using the GET method. Data communication that occurs consists of the transmission of RFID data, request for employee ID and delivery of employee attendance data.

Figure 11. Data communication flows

4.8 UseCase diagram

UseCase diagram is modeling to define the functional and operational needs of the system by defining the use scenario of the system to be built. From the results of the analysis of existing applications, UseCase diagram for employee attendance system is divided into two, namely UseCase on Web API and UseCase on the employee attendance tool as follows :

Figure 12. UseCase Web API diagram

On the Web API, HRD login to log in to the application, after the HRD has successfully logged in, HRD can see attendance data, processing employee data such as adding new employee data, changing employee data and deleting employee data and processing admin data. HRD can also print employee attendance data reports.

Before employees can perform the attendance process, HRD add employee data and fill the RFID number with RFID training of employees as well as employees conducting employee face training on attendance device.

Figure 13. UseCase the Employee Attendance tool diagram

4.10 Relationship schemes

The relationship scheme is an overview of the relationships between the data, its meaning, and its boundaries are explained by rows and columns. Here is the relationship scheme for employee attendance system:

Figure 14. Employee Attendance System Relationship Scheme

5. RESULTS AND DISCUSSION 5.1 RFID Scan Distance Testing

Here are the results of the testing distance of RFID scan with RFID type S50 and RFID reader RC-522 with a frequency of 13.56 MHz.

Table 1. RFID Scan Distance Test results				
No	Id RFID	Distance	Result	
1	920026325140	0 cm	Detected	
2	920026325140	0,5 cm	Detected	
3	920026325140	1 cm	Detected	
4	920026325140	1,5 cm	Detected	
5	920026325140	2 cm	Detected	
6	920026325140	2,5 cm	Undetectable	

Based on the results of the test of the RFID scan distance in the Table 4.16 indicates that the RFID S50 type card can be detected on the RFID reader RC-522 at a maximum distance of 2 cm.

4.2 Facial recognition Accuracy Testing

Figure 15. Testing facial recognition accuracy with 3 data training

Table 2.	Results of face recognition accuracy	test
	with 3 data training	

No	Test iterations	Status	Accuracy percentage
1	1st Iteration	Detected	78%
2	2nd Iteration	Detected	86%
3	3rd Iteration	Detected	94%
4	4th Iteration	Detected	88%
5	5th Iteration	Detected	89%
6	6th Iteration	Detected	94%
7	7th Iteration	Detected	94%
8	8th Iteration	Detected	94%
9	9th Iteration	Detected	94%
10	10th Iteration	Detected	91%
	Average perce	90,2%	

Figure 16. Testing facial recognition accuracy with 5 data training

 Table 3. Results of face recognition accuracy test

 with 5 data training

No	Test iterations	Status	Accuracy percentage
1	1st Iteration	Detected	88%
2	2nd Iteration	Detected	90%
3	3rd Iteration	Detected	93%
4	4th Iteration	Detected	91%
5	5th Iteration	Detected	93%
6	6th Iteration	Detected	90%
7	7th Iteration	Detected	89%
8	8th Iteration	Detected	85%
9	9th Iteration	Detected	85%
10	10th Iteration	Detected	90%
	Average perc	89,4%	

Figure 17. Testing facial recognition accuracy with 10 data training

Table 4. Results of face recognition accuracy	test
with 10 data training	

No	Test iterations	Status	Accuracy percentage
1	1st Iteration	Detected	88%
2	2nd Iteration	Detected	88%
3	3rd Iteration	Detected	88%
4	4th Iteration	Detected	88%
5	5th Iteration	Detected	83%
6	6th Iteration	Detected	86%
7	7th Iteration	Detected	89%
8	8th Iteration	Detected	87%
9	9th Iteration	Detected	89%
10	10th Iteration	Detected	88%
Average percentage			87,4%

From the above accuracy testing showed that the average percentage for testing with 3 training data was 90.2%, testing with 5 training data was 89.4%, and testing with 10 training data was 87.4%. Based on the results of the test, the highest average accuracy is to use three data training of the face.

4.3 Attendance testing at Attendance system

Figure 18. Testing absent entry

Table 5.	Test	results	of the	absent	entry
----------	------	---------	--------	--------	-------

ruble et rest results of the desent entry				
No	Id RFID	NIP	Status	
1	920026325140	063150205	Successful	
2	920026325140	063150205	Successful	
3	920026325140	063150205	Successful	
4	920026325140	063150205	Successful	
5	920026325140	063150205	Successful	
6	920026325140	063150205	Successful	
7	920026325140	063150205	Successful	
8	920026325140	063150205	Successful	

No	Id RFID	NIP	Status
9	920026325140	063150205	Successful
10	920026325140	063150205	Successful
Successful Percentage			100%

Figure 19. Testing absent out

Table 6. Test results off the absent out				
No	Id RFID	NIP	Status	
1	920026325140	063150205	Successful	
2	920026325140	063150205	Successful	
3	920026325140	063150205	Successful	
4	920026325140	063150205	Successful	
5	920026325140	063150205	Successful	
6	920026325140	063150205	Successful	
7	920026325140	063150205	Successful	
8	920026325140	063150205	Successful	
9	920026325140	063150205	Successful	
10	920026325140	063150205	Successful	
Persentasi Berhasil			100%	

6. CONCLUSION AND SUGGESTION 5.1 Conclusion

Based on the research results and test results conducted in this final task can be concluded as follows:

- 1. The system can prevent the occurrence of fraud in the employee attendance process because the attendance process can be done only by the employee itself by using a proprietary RFID and facial recognition based on NIP. The employee attendance system can also help the HRD to minimize the error in the recapitulation of the attendance report.
- 2. The test results indicate that the RFID card S50 and RFID Reader RC-522 with a frequency of 13.56 MHz can be detected with a maximum distance of 2cm, and testing the accuracy of facial recognition using 3 data training face has an average level the highest accuracy of 90.2%.

5.2 Suggestion

An employee attendance system that built need development to improve and add features in performing attendance process, some advice that can be used for guidance in the development of the attendance system of this employee is as follows:

- 1. We recommend that this system is integrated with a personnel information system for attendance data that results from the employee attendance system can be authorized.
- 2. To improve the results of facial recognition accuracy better, we recommend using a camera with better quality and using the camera light.

BIBLIOGRAPHI

- U. Rahardja, O. Sholeh, and F. Nursetianingsih, "Penggunaan Dashboard Untuk Mengontrol Kinerja Profesionalisme Pegawai Pada Pt. Sinarmas Land Property," no. ISSN: 2302-3805, pp. 6–8, 2015.
- [2] A. C. Karyawan *et al.*, "Aplikasi Data Mining Market Basket Analysis Pada Tabel Data Absensi Elektronik Untuk Mendeteksi Kecurangan," pp. 119–129.
- [3] M. H. Asghar, A. Negi, and N. Mohammadzadeh, "Principle application and vision in Internet of Things (IoT)," in *International Conference on Computing, Communication and Automation, ICCCA* 2015, 2015.
- [4] Rakhman, Raspberry Pi Mikrokontroller Mungil yang Serba Bisa. Yogyakarta: Andi, 2014.
- [5] A. Dinata, *Physical Computing dengan Raspberry Pi*. Jakarta: Elex Media Komputindo, 2017.
- [6] P. A. E. Pratama and S. Suakanto, Wireless Sensor Network. Bandung: Informatika Bandung, 2015.
- [7] Aris, I. Mubarak, W. Yuliardi, A. Ramadhan, and A. Permana, "Desain Aplikasi Sistem Informasi Absensi Karyawan dengan Radio Frequency Identification (RFID) pada PT. Skyputra Pancasurya," in Seminar Nasional Teknologi Informasi dan Multimedia 2015, 2015.
- [8] H. Al Fatta, *Rekayasa Sistem Pengenalan Wajah*. Yogyakarta: Andi, 2009.
- [9] M. Nazir, *Metode Penelitian*. Bogor: Ghalia Indonesia, 2017.
- [10] D. Hirawan and P. Sidik, "Prototype Emission Testing Tools for L3 Category Vehicle," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 407, no. 1, p. 012099, Sep. 2018.