BAB 4

IMPLEMENTASI DAN PENGUJIAN

Tahap implementasi dan pengujian sistem merupakan tahap perancangan dari hasil analisis ke dalam suatu bahasa pemogramman tertentu serta penerapan perangkat lunak yang dibangun pada lingkungan yang sesungguhnya. Setelah implementasi maka dilakukan pengujian sistem yang baru, dimana akan dilihat kekurangan-kekurangan pada aplikasi yang baru untuk selanjutnya diadakan pengembangan sistem. Tujuan implementasi sistem adalah untuk mengkonfirmasikan modul program perancangan kepada para pelaku sistem sehingga pengguna dapat memberi masukkan kepada pembangunan sistem.

4.1 Implementasi Sistem

Implementasi sistem yang akan dilakukan pada tahapan ini adalah mendiskripsikan lingkungan implementasi dimana sistem akan ditanam. Kemudian dengan melakukan deskripsikan implementasi antarmuka dimana akan didaftar antarmuka apa saja yang akan diimplementasikan.

4.1.1 Lingkungan Hardware

Berikut adalah spesifikasi hardware dalam perhitungan pernagkat lunak ini :

No	Item	Spesifikasi
1	Processor	Intel Pentium inside
2	Harddisk	Space 50GB
3	Memory	4 GB
4	VGA	500MB
5	Monitor	500MB

Tabel 4.1 Lingkungan Hardware Pembangunan Aplikasi

6	Mouse	Optical Logitech
7	Keyboard	QWERTY Creative
8	Koneksi Internet	Ada

4.2 Lingkungan Software

Perangkat lunak yang digunakan dalam pembangunan aplikasi ini adalah :

- 1. Sistem Opperasi Windows 10 Ultimate
- 2. Bahasa Pemograman Javascript dan HTML5
- 3. Web Browser : Google Chrome 71.0.3578.98
- 4. Code Editor menggunakan Sublime Text 3
- 5. Implementasi Simulator menggunakan RequireJs
- 6. Template Simulator menggunakan MustacheJS
- 7. UML Modeler menggunakan Microsoft Visio 2016

4.2.1 Implementasi Slow Shutter Speeed

Pada tahapan ini dilakukan penerapan konsep *Slow Shutter Speed* dengan dasar *exposure triangle* dimana dengan nilai *exposure* yang didapatkan dari sebuah rumus yang sudah menjadi standarisasi dalam fotografi. Pada tahapan ini dibagi menjadi 4 bagian yaitu implementasi perhitungan *ISO*, implementasi perhitungan nilai *aperture*, implementasi perhitungan *Shutter Speed*, dan implementasi perhitungan nilai *exposure*. Dimana rumus utama yang menjadi faktor kombinasi ke 3 elemen yaitu :

$$\mathsf{EV} = \mathrm{Log}_2 \, \frac{N^2}{t}$$

Dimana: *N* adalah nilai relatif dari sebuah *aperture* (*f-number*) *t* adalah nilai *shutter speed* (*time*) perdetik 1. Implementasi perhitungan ISO

```
// Fungsi Fungsi ISO
var ISOToThirds = function (ISO) {
    return Math.round(Math.log(ISO / 100) / Math.LN2 * 3);
}:
var thirdsToISO = function (thirds) {
    var iso = Math.pow(2, thirds / 3) * 100,
       round;
    if (iso < 50) {
       round = 5;
    } else if (iso < 1000) {
       round = 10;
    } else if (iso < 1600) {
       round = 50;
    } else {
       round = 100;
    3
    return Math.round(iso / round) * round;
1:
var ISORange = function (lowerBound, upperBound) {
   return xRange(lowerBound, upperBound, ISOToThirds, thirdsToISO);
};
var roundISO = function (ISO) {
   return thirdsToISO(ISOToThirds(ISO));
};
```


2. Implementasi perhitungan aperture

```
// Fungsi Fungsi Aperture
var apertureToThirds = function (aperture) {
    return Math.round(Math.log(aperture) / Math.LN2 * 6);
}:
var thirdsToAperture = function (thirds) {
    return Math.round(Math.pow(2, thirds / 6) * 10) / 10;
}:
var apertureRange = function (lowerBound, upperBound) {
    return xRange(lowerBound, upperBound, apertureToThirds, thirdsToAperture);
};
var roundAperture = function (aperture) {
    return thirdsToAperture(apertureToThirds(aperture));
};
```

Gambar 4.2 Implementasi Perhitungan Aperture

3. Implementasi perhitungan shutter speed

```
// Fungsi Fungsi Shutter speed
var shutterToThirds = function (shutter) {
    return Math.round(Math.log(shutter) / Math.LN2 * 3);
};
var thirdsToShutter = function (thirds) {
    return Math.pow(2, thirds / 3);
};
var shutterRange = function (lowerBound, upperBound) {
    return xRange(lowerBound, upperBound, shutterToThirds, thirdsToShutter);
};
var roundShutter = function (shutter) {
    return thirdsToShutter(shutterToThirds(shutter));
};
```


4. Implementasi perhitungan Exposure

```
// mengembalikan nilai EV dengan ISO 100
var EV = function (ISO, aperture, shutter) {
    return Math.log((100 * aperture * aperture) / (shutter * ISO)) / Math.LN2;
1;
var EVToThirds = function (EV) {
   return Math.round(EV * 3);
1:
var thirdsToEV = function (thirds) {
   return Math.round(100 * thirds / 3) / 100;
};
var roundEV = function (EV) {
   return thirdsToEV (EVToThirds (EV));
1;
var EVRange = function (lowerBound, upperBound) {
    return xRange(lowerBound, upperBound, EVToThirds, thirdsToEV);
1;
var lightScore = function (aperture, cropFactor) {
    return 10 + Math.log(1 / (aperture * aperture * cropFactor * cropFactor)) / Math.LN2;
1;
```

```
Gambar 4.4 Implementasi Perhitungan Exposure (EV)
```

4.2.2 Implementasi Antarmuka

Pada tahapan ini dilakukan penerapan hasil perancangan antarmuka ke dalam aplikasi yang sudah dibangun menggunakan perangkat lunak yang telah dipaparkan pada sub bab implemantasi perangkat lunak yang tercantum pada tabel antarmuka yang merupakan implementasi *file* yang mewakilinnya dan gambar hasil *screenshoot* untuk antarmuka yang dapat dilihat pada bagian berikut ini :

No	Nama	Nama File	File Requirment
	Antarmuka		
1	Tampilan Menu Utama	index.html	style.css ihover.css materidslr.html simulatordslr.html latihandslr.html
2	Tampilan Materi DSLR	materi.html	style.css botstrap.css font-awesome.min.css ihover.css stuck.css jquery-1.11.0.js bootstrap.min.js tmStickUp.js jquery.ui.totop.js

Tabel 4.2 Implementasi File

3	Tampilan	simulator.html	style.css stuck.css
	Simulator DSLR		jquery-ui.css
			requery-jequery.js
			jquery-ui-1.9.0.custom.min.js
			cameracontrol.js cameradata.js
			cameraengine.js
			cameraselector.js
			camerasetting.js
			camerapage.js
			exposurefunction.js
			getUrl.js main.js
			mustache.js scene.js
			urlUtil.js
4	Tampilan	latihan.html	style.css stuck.css
	Latihan DSLR		jquery-ui.css
			require-jquery.js
			jquery-ui-
			1.9.0.custom.min.js
			cameracontrol.js
			cameradata.js
			cameraengine.js
			cameraexercises.js
			cameraselector,js
			camerasetting.js
			camerapage.js
			axposurefunction.js
			geturl.js main.js
			main_latihan.js
			mustache.js
			scene.js

	scene_latihan.js
	urlUtil.js

4.3 Pengujian Sistem

Pengujian sistem tersebut terdiri dari dua tahapan yaitu pengujian *alpha* dan pengujian *beta*. Pengujian *alpha* dilakukan pada sisi pengembangan yang merekam semua permasalahan dan kesalahan pemakaian, sedangkan pengujian *beta* merupakan pegujian yang akan dilakukan secara objektif dimana pengujian dilakukan secara langsung kepada responden. Pada kasus ini, pengujian *alpha* dilakukan dengan jenis pengujian *blackbox*, sedangkan pengujian *beta* dilakukan dengan jenis pengujian kuisoner.

4.3.1 Rencana Pengujian

Rencana pengujian adalah proses pengujian yang dilakukan terhadap fungsifungsi yang ada didalam aplikasi yang sudah dibangun, apakah fungsionalitas dari aplikasi tersebut berfungsi sesuai yang diharapkan atau tidak. Pada bagian rencana pengujian ini dibagi menjadi dua jenis, yaitu rencana pengujian fungsional dan rencana pengujian acceptance.

1. Rencana pengujian fungsional

Rencana pengujian yang dilakukan yaitu dengan *website* simulator kamera *DSLR* yang sudah dibuat dengan jenis pengujian *blackbox*

Tabel	4.3	Rencana	Pengu	ıjian
-------	-----	---------	-------	-------

No	Sistem yang diuji	Jenis Pengujian
1	Website Simulator Kamera DSLR	Blackbox

2. Rencana pengujian Acceptance

Rencana pengujian *acceptance* yang dilakukan adalah dengan melakukan kuisoner langsung kepada narasumber yakni Fotografer Regional Bandung baik pemula maupun senior untuk menguji aplikasi simulator kamera *DSLR* yang telah dibangun.

4.3.2 Skenario Pengujian

Pada bagian skenario pengujian ini dibagi menjadi dua jenis, yaitu skenario pengujian fungsional dan skenario pengujian *acceptance*.

1. Skenario pengujian fungsional

Skenario pengujian fungsional yang akan dilakukan adalah untuk menguji sistem yaitu *website* simulator kamera *DSLR*. Skenario urutan pegujian terhadap sistem *website* simulator kamera *DSLR* dapat dilihat pada tabel dibawah ini.

No	Kelas Uji	Poin Pengujian	Jenis Pengujian
		Memilih Materi Fotografi	Black Box
1	Menu Utama	Memilih Simulator DSLR	Black Box
		Memilih Latihan DSLR	Black Box
-	Menu Materi	Memilih Sejarah Fotografi	Black Box
		Memilih Kamera dan Lensa	Black Box
		Memilih Slow Shutter Speed	Black Box
2		Memilih Tips Fotografi	Black Box
		Memilih Navigasi Menu	Black Box
		Utama	Didek Dox
		Memilih Navigasi Simulator	Black Box
		Fotografi	Diaten Don

Tabel 4.4 Skenario Pengujian Fungsional

		Memilih Navigasi Menu	Black Box
		Menekan Logo Aplikasi	Black Box
		Memilih Tipe Kamera	Black Box
		Memilih Scene	Black Box
		Mengatur Nilai ISO	Black Box
		Mengatur Nilai Aperture	Black Box
		Mengatur Nilai Shutter Speed	Black Box
		Mengatur Nilai Exposure	Black Box
3	Menu Simulator	Memilih Navigasi Menu Utama	Black Box
		Memilih Navigasi Materi Fotografi	Black Box
		Memilih Navigasi Latihan Fotografi	Black Box
		Menekan Logo Aplikasi	Black Box
		Menampilkan <i>Pop up</i> Latihan	Black Box
		Mengakses Simulator Kamera	Black Box
		Menampilan Hasil Latihan	Black Box
		Memilih Navigasi Menu	Plack Por
4	Menu Latihan	Utama	<i>Diuck Dox</i>
	Fotografi	Memilih Navigasi Materi	Black Box
		Fotografi	Drack Dox
		Memilih Navigasi Simulator Fotografi	Black Box
		Menekan Logo Aplikasi	Black Box

2. Skenario pengujian acceptance

Pada bagian skenario pengujian *acceptance* ini akan dipaparkan berupa skenario wawancara dan kisi-kisi pernyataan kuesioner. Untuk daftar pertanyaan skenario wawancara terdiri dari 5 pertanyaan dan untuk daftar peryataan kuesioner terdiri dari 15 pernyataan yang masing-masing terdapat bentuk negatif dan positifnya.

4.3.3 Hasil Pengujian

Pada bagian hasil pengujian ini dibagi menjadi dua jneis, yaitu hasil pengujian fungsional dan pengujian *acceptance*.

a. Hasil pengujian fungsional

Pada bagian hasil pengujian fungsional ini terdapat pemaparan dari rencana pengujian yang tellah disusun pada skenario pengujian. Berikut ini adalah pemaparan tiap poin pengujian pada skenario pengujian.

1. Menu Utama

No	Skenario Uji	Hasil yang diharapkan	Hasil Pengujian
1	Memilih Materi Fotografi	Menampilkan Materi	[√] Berhasil
		Fotografi	[] Tidak Berhasil
2	Memilih Simulator	Menampilkan	[√] Berhasil
	Fotografi	Simulatot Kamera	[] Tidak Berhasil
		DSLR	
3	Memilih Latihan Fotografi	Menampilkan Pop up	[√] Berhasil
		Latihan yang	[] Tidak Berhasil
		terintegrasi dengan	
		Simulator	
		Kamera DSLR	

Tabel 4.5 Hasil Pengujian Menu Utama

1. Menu Simulator

Pada bagian pengujian menu simulator ini akan dilakukan berdasarkan kondisi pengaturan pada kamera *DSLR*.

	Pemilihan Tipe Kamera				
No	Kondisi	Hasil yang	Hasil Pengujian	Kesimpulan	
	Pengujian	diharapkan			
1	Tipe-tipe kamera	Sistem	[√] Berhasil	Diterima	
	yang tersedia di	memunculkan	[] Tidak Berhasil		
	sistem	dropdown menu dan			
		menampilkan			
		pilihan tipe kamera			
		sebagai berikut :			
		- Full Frame			
		DSLR, 18-			
		55mm, f4			
		- Full Frame			
		DSLR,			
		55mm, f1.8			
		- Full Frame			
		DSLR,			
		18-35mm, f4			
		- Crop DSLR,			
		18-			
		55mm, f4			
		- Crop DSLR,			
		55mm, f1.8			
		- Crop DSLR,			
		18-			
		35mm, f4			

Tabel 4.6 Hasil Pengujian Pemilihan Tipe Kamera

2	Respon sistem	Sistem melakukan	[√] Berhasil	Diterima
	setelah	perubahan kualitas	[] Tidak Berhasil	
	dilakukan	foto yang		
	pemilihan tipe	ditampilkan sesuai		
	kamera	dengan tipe kamera		
		dan lensa yang		
		dipilih		

Tabel 4.7 Hasil Pengujian Pemilihan Tipe Scene

	Pemilihan Tipe Scene				
No	Kondisi Pengujian	Hasil yang diharapkan	Hasil Pengujian	Kesimpulan	
1	Tipe-tipe s <i>cene</i> yang tersedia di sistem	Sistem memunculkan <i>dropdown</i> menu dan menampilkan pilihan 6 tipe scene	[√] Berhasil [] Tidak Berhasil	Diterima	
2	Respon sistem setelah dilakukan pemilihan tipe <i>scene</i>	Sistem melakukan perubahan <i>scene</i> atau gambar sebagai objek yang ditampilkan sesuai dengan tipe kamera dan lensa yang dipilih	[√] Berhasil [] Tidak Berhasil	Diterima	

Pada pemilihan tipe *scene* terdapat 6 jenis *scene* yang dapat digunakan oleh simulator kamera DSLR sebagai contoh pada implementasi dari beberapa kondisi. 6 jenis *scene* tersebut diantaranya :

a. Building, 18-55mm, 9EV

Tipe *scene* building, 18-55mm, 9*EV memiliki arti bahwa scene* tersebut memiliki besaran lensa 18-55mm dan memiliki nilai *exposure* sebesar 9*EV*. *Scene* tersebut bisa disimulasikan untuk contoh pengambilan cahaya lampu gedung dimalam hari tanpa menggunakan flash internal maupun eksternal.

Gambar 4.5 Scene building, 18mm-55mm, 9EV

b. Building, 55mm, 9EV

Tipe *scene building*, 55mm, 9EV berarti bahwa *scene* tersebut memiliki besaran lensa 55mm dan memiliki nilai exposure sebesar 9EV. *Scene* tersebut hampir sama dengan *scene building* 18mm, namun yang membedakan ukuran lensa, dengan ukuran lensa 55mm, objek terlihat lebih dekat dengan kamera, sehingga objek *building* lebih jelas.

Gambar 4.6 Scene Building, 55mm, 9EV

c. Light Trail, 18-55mm, 7EV

Scene Light Trail 18-55mm, 7EV dapat digunakan untuk simulasi foto slow shutter speed pada kondisi malam hari di kota dengan memanfaatkan cahaya kendaraan yang lewat.

Scene tersebut memiliki ukuran lensa 18-55mm dan nilai exposure 7EV.

Gambar 4.7 Scene Light Trail 18-55mm, 7EV

d. Light Trail, 55mm, 7EV

Tipe *scene Light Trail*, 55mm, 9EV berarti bahwa *scene* tersebut memiliki besaran lensa 55mm dan memiliki nilai *exposure* sebesar 9EV. *Scene* tersebut hampir sama dengan *scene Light Trail* 18mm, namun yang membedakan ukuran lensa, dengan ukuran lensa 55mm, objek terlihat lebih dekat dengan kamera, sehingga objek *Light Trail* lebih jelas.

Gambar 4.8 Scene Light Trail 55mm, 7EV

e. Street, 18-55mm, 5*EV*

Scene Street 18-55mm, 5EV dapat digunakan untuk simulasi foto Slow Shutter Speed pada kondisi malam hari di jalanan kota. Scene tersebut memiliki ukuran lensa 18-55mm dan nilai exposure 5EV.

Gambar 4.9 Scene Light Trail 18-55mm, 7EV

f. Street, 55mm, 7EV

Tipe *scene Street*, 55mm, 9EV berarti bahwa *scene* tersebut memiliki besaran lensa 55mm dan memiliki nilai exposure sebesar 9EV. *Scene* tersebut hampir sama dengan *scene Street* 18mm, namun yang membedakan ukuran lensa, dengan ukuran lensa 55mm, objek terlihat lebih dekat dengan kamera, sehingga objek *Street* lebih jelas.

Gambar 4.10 Scene Light Trail 55mm, 7EV

0 u					
	Pengaturan Slow Shutter Speed				
No	Kondisi Pengujian	Hasil yang	Hasil Pengujian	Kesimpulan	
		diharapkan			
1	Pengaturan kamera		[√] Berhasil	Diterima	
	dengan spesifikasi	-Sistem	[] Tidak Berhasil		
	sebagai berikut :	menghasilkan EV			
	1. Camera : Full Frame	secara otomatis			
	DSLR 18-55mm, f4	dan nilai yang			
	2. Scene : Street 18mm,	dihasilkan adalah			
	5EV	0 (normal).			
	3. Mode : M				
	4. ISO : 1600	- Scene yang			
	5. Aperture : f22	dihasilkan akan			
	6. Shutter speed : 15s	terlihat normal,			
		tidak terlalu gelap			
		dan tidak terlalu			
		terang			

Tabel 4.8 Hasil Pengujian Menu Simulator

2	Pengaturan kamera	Scene yang	[√] Berhasil	Diterima
	dengan spesifikasi	dihasilkan akan	[] Tidak Berhasil	
	sebagai berikut :	terdapat banyak		
	1. Camera : Full Frame	noise dan cahaya		
	DSLR 18-55mm, f4	yang didapatkan		
	2. Scene : Building	akan sangat terang		
	18mm,	(over exposure)		
	5EV			
	3. Mode : M			
	4. ISO : 1600			
	5. Aperture : f22			
	6. Shutter speed : 15s			
3	Pengaturan kamera	Scene yang	[√] Berhasil	Diterima
	dengan spesifikasi	dihasilkan akan	[] Tidak Berhasil	
	sebagai berikut :	sangat gelap		
	1. Camera : Full Frame	(under exposure)		
	DSLR 18-55mm, f4			
	2. Scene : Building			
	18mm,			
	5EV			
	3. Mode : M			
	4. ISO : 100			
	5. Aperture : f22			
	6. Shutter speed : 1/8s			
5	Menekan slider ISO	Sistem	[√] Berhasil	Diterima
		mengeluarkan Pop	[] Tidak Berhasil	
		<i>up</i> informasi atau		
		penjelasan tentang		
		ISO		

6	Menekan slider Aperture	Sistem	[√] Berhasil	Diterima
		mengeluarkan Pop	[] Tidak Berhasil	
		<i>up</i> informasi atau		
		penjelasan tentang		
		Aperture		
7	Menekan slider Shutter	Sistem	[√] Berhasil	Diterima
	speed	mengeluarkan Pop	[] Tidak Berhasil	
		<i>up</i> informasi atau		
		penjelasan tentang		
		Shutter speed		
8	Menekan s <i>lider</i> FV	Sistem	[/] Dowhooil	Diterima
0	Wienekan Stuer LV	mengeluarkan Pon		Diterinia
		un informaci atau	[] Tidak Berhasil	
		<i>up</i> miormasi atau		
		penjelasan tentang		
		Exposure		
9	Memilih Navigasi	Sistem	[√] Berhasil	Diterima
	Simulator	menampilkan	[] Tidak Berhasil	
		Simulator Kamera		
		DSLR		
10	Memilih Navigasi Materi	Sistem	[√] Berhasil	Diterima
	Fotografi	menampilkan	[] Tidak Berhasil	
		Materi Fotografi		
11	Memilih Navigasi	Sistem	[√] Berhasil	Diterima
	Latihan	menampilkan	[] Tidak Berhasil	
		Latihan yang		
		terintegrasikan		
		dengan simulator		
		kamera <i>DSLR</i>		

12	Menekan Logo Aplikasi	Sistem	[√] Berhasil	Diterima
		menampilkan	[] Tidak Berhasil	
		menu utama		

3. Menu Materi Fotografi

No	Skenario Uji	Hasil yang	Hasil Pengujian
		diharapkan	
1	Memilih Sejarah Fotografi	Sistem menampilkan	[√] Berhasil
		materi sejarah	[] Tidak Berhasil
		fotografi	
2	Memilih Kamera dan Lensa	Sistem menampilkan	[√] Berhasil
		materi kamera dan	[] Tidak Berhasil
		lensa	
3	Memilih Slow Shutter Speed	Sistem menampilkan	[√] Berhasil
		materi Slow Shutter	[] Tidak Berhasil
		Speed	
4	Memilih Tips Fotografi	Sistem menampilkan	[√] Berhasil
		materi tips-tips	[] Tidak Berhasil
		fotografi	

Tabel 4.9 Hasil Pengujian Menu Materi Fotografi

4. Menu Latihan

Tabel 4.10 Hasil Pengujian Menu Latihan

No	Skenario Uji	Hasil yang diharapkan	Hasil Pengujian
1	Memilih Menu Latihan	Sistem menampilkan menu	[√] Berhasil
		kamera simulator dengan pop	[] Tidak Berhasil
		up "Selamat datang"	

2	Klik tombol mulai	Sistem akan menampilkan	[√] Berhasil
		pop up latihan Slow Shutter	[] Tidak Berhasil
		Speed 1 dengan gambar	
		contoh "temple"	
3	Klik tombol mulai (2)	Sistem menampilkan	[√] Berhasil
		simulator kamera yang sudah	[] Tidak Berhasil
		disesuaikan dengan latihan	
		yang diperintahkan.	
4	Klik tombol capture pada	Sistem menampilkan pesan	[√] Berhasil
	kamera simulator	apakah hasil yang diatur oleh	[] Tidak Berhasil
		pengguna benar atau salah	
5	Jika pengguna sudah	Sistem akan menampilkan pop	[√] Berhasil
	melewati beberapa level	up finish.	[] Tidak Berhasil
	ujian yang diberikan		

b. Hasil pengujian kuisoner

Hasil pengujian *acceptance* ini berupa hasil yang didapatkan setelah melakukan kuisioner kepada 30 koresponden di lingkungan fotografer bandung. Dari hasil rincian perhitungan kuesioner dapat disimpulkan bahwa tujuan dari aplikasi simulator kamera *DSLR* yang pertama yakni memudahkan fotografer pemula untuk berlatih menggunakan kamera *DSLR* dengan memahami cara kerja *Slow Shutter Speed* tanpa memiliki kamera terlebih dahulu memiliki rata-rata 3.82 dengan cukup membantu.

Gambar 4.11 Hasil Kuisoner Memudahkan Fotografer Pemula Untuk Berlatih Menggunakan Kamera *DSLR* Dengan Memahami Cara Kerja *Slow Shutter Speed* Tanpa Memiliki Kamera

Kemudian tujuan dari aplikasi simulator kamera DSLR yang kedua yakni memudahkan fotografer pemula untuk berlatih menggunakan kamera DSLR dengan memahami tipe kamera dan lensa, memiliki nilai rata-rata 3.83 dimana aplikasi simulator kamera DSLR ini dinilai positif dan cukup membantu para fotografer pemula.

Gambar 4.12 Hasil Kuisoner Fotografer Pemula Memahami Tipe Kamera Dan Lensa *DSLR*

Kemudian tujuan dari aplikasi simulator kamera DSLR yang ketiga yakni memudahkan fotografer pemula untuk berlatih menggunakan kamera DSLR dengan memahami pengaturan DOF, memiliki nilai rata-rata 3.69 dimana aplikasi simulator kamera DSLR ini dinilai positif dan cukup membantu para fotografer pemula.

Gambar 4.13 Hasil Kuisoner Memudahkan Fotografer Pemula Untuk Berlatih Menggunakan Kamera *DSLR* Dengan Memahami Pengaturan *DOF*

Kemudian tujuan dari aplikasi simulator kamera DSLR yang ketiga yakni Memudahkan fotografer pemula untuk berlatih menggunakan kamera DSLR dengan memahami pemilihan mode manual memiliki nilai rata-rata 4.13 dimana aplikasi simulator kamera DSLR ini dinilai positif dan membantu para fotografer pemula.

Gambar 4.14 Memudahkan Fotografer Pemula Untuk Berlatih Menggunakan Kamera DSLR Dengan Pemilihan Mode Manual

c. Evaluasi Pengujian

Pada bagian evaluasi pengujian ini terbagi menjadi dua jenis, yaitu evaluasi pengujian fungsional dan evaluasi pengujian *acceptance*.

1. Evaluasi pengujian fungsional

Berdasarkan hasil pengujian fungsional yang dilakukan maka dapat disimpulkan bahwa aplikasi simulator kamera *DSLR* yang dibangun sudah berjalan

sesuai dengan yang diharapkan baik itu dari segi proses simulasi kamera maupun dari segi penerapan konsep *slow shutter*.

2. Evaluasi pengujian acceptance

Berdasarkan hasil pengujian *acceptance* yang telah dilaukan, maka detail kesimpulan dapat dilihat pada tabel 4.11

No	Tujuan	Evaluasi Hasil Acceptance
1	Memudahkan fotografer pemula untuk	Cukup Membantu
	berlatih menggunakan kamera DSLR	
	dengan memahami cara kerja Slow Shutter	
	Speed pada Night Photography tanpa	
	memiliki kamera terlebih dahulu.	
2	Memudahkan fotografer pemula untuk	Cukup Membantu
	berlatih menggunakan kamera DSLR	
	dengan memahami tipe kamera dan lensa	
3	Memudahkan fotografer pemula untuk	Cukup Membantu
	berlatih menggunakan kamera DSLR	
	dengan memahami DOF	
4	Memudahkan fotografer pemula untuk	Membantu
	berlatih menggunakan kamera DSLR	
	dengan memahami pemilihan mode	
	manual.	

Tabel 4.11 Evaluasi pengujian acceptance

Dari tabel tersebut dapat disimpulkan bahwa sistem yang dibangun telah sesuai dengan tujuan yang diharapkan.