
MPLEMENTATION OF MULTI AGENT SYSTEM PATHFINDING

ALGORITHM USING LIFELONG PLANNING A *

ON THE LABIRIN GAME NPC

Danang Setyo Widodo1,Galih Hermawan2

1,2Universitas Komputer Indonesia

Jl. Dipati Ukur No. 102-114 Bandung

E-mail : danang.wiodo65@gmail.com1,galih.hermawan@email.unikom.ac.id2

ABSTRACT

Labirynth is a puzzle in the form of complex

road branching and has many dead ends. The aim of

the game is that players must find a way out of an

entrance to one or more exits. Pathfinfing is

artificial intelligence that uses the fastest path

search algorithm. The application that can be done

with pathfinding includes searching the path in a

game and searching the path on a map. One

algorithm that can be used is Lifelong Planning A

*, an incremental version of A * that can adapt to

changes in the graph without recalculating the

entire graph, by updating the g-value (distance from

the start) from the previous search during the

current search to fix it when needed. Lifelong

Planning Algorithm A * aims to determine the

accuracy of the success rates of many agents in the

pathfinding algorithm in determining the steps of

the labyrinthine Agent. The characteristics of the

game that will be built have the use of obstruction

features to block labyrinthine agents from chasing

players, and several labyrinthine agents that move

simultaneously (multi agent) .. In the testing

process of 30 repetitions that have been prepared by

the npc Agent able to find 25 paths on 8 Npc agents

and have an average accuracy of 91.7 percent. And

has a speed value of 166,999 ms in the length of

execution time with 15x15 orders and 8 Agents.

After testing the system with the Black Box method

and calculating the level of accuracy, it can be

concluded that the program is functioning correctly.

Kata Kunci: Lifelong Planning a*, multi Agent,

pathfinding, labirynth, Game.

1. INTRODUCTION

Maze game is a game looking for paths where

the labyrinthine path gets a lot of predetermined

obstacles to reach the destination. At this time there

are still many players who are confused in finding a

way out, how to get a bonus value and can raise it

to the next step. So in achieving the goal needed a

solution, one solution that can be used is the

backtracking algorithm. Backtracking algorithm is

an algorithm that can be used to create a

labyrinthine application where the algorithm works

is to find the right solution to determine the right

path to achieve the intended goal [2]. But in its

implementation this algorithm only uses the Single

Agent System. So the results are unknown if there

are several agents tested.

There are several studies on the application of

AI in Pathfinding NPC in labyrinth games such as

those conducted by Ilham Ramadhan in 2017, said

the Jump Point Search algorithm can be applied to

optimize the search for the fastest NPC dynamically

[1]. The problem of the previous research is that

there has been no testing of 2 or more NPCs.

The second is the research conducted by Sri

Anggraini Surianto about the Implementation of

Iterative Deepening A * (IDA *) Algorithms with

Stochastic Node Caching (SNC) for Enemy

Pathfinding in Maze Games, Position of players,

enemies and number of walls / barriers also affect

the number of node expansion. The farther the

distance between the player and the enemy, the

more nodes will be expanded. The more number of

walls / barriers in the map, the more nodes that are

expanded. So that it causes a decrease in process

speed if it is carried out on 2 or more Agents [11].

Pathfinding is one of the most basic problems of

artificial intelligence (AI) in the game. Poor

pathfinding can make the characters in the game

look brainless. Effective handling of pathfinding

problems can make the game more fun and provide

a player with a deep playing experience [3].

One of the pathfinding algorithms that can be

used in finding and recognizing this pathway is the

Lifelong Planning A * (LPA *) algorithm. The LPA

* algorithm is a development of the A * algorithm

developed by Hang Ma and Jiaoyang Li in 2017.

These algorithms use hundreds of agents and

assignments [2].

1.1 GOALS AND PURPOSE

Based on the existing problems, the purpose of

this study is to implement the Lifelong Planning A

* algorithm on the labyrinthine NPC

simultaneously in the search for the fastest path.

Then the objective to be achieved from this study is

to determine the accuracy of the success rates of

many agents in the pathfinding algorithm in

determining the steps of the labyrinthine NPC by

using Lifelong Planning A *.

1.2 Research Method

Research methods are a way to achieve a goal in

a study. For this study the authors used descriptive

research methods. Descriptive research method is a

study that aims to describe a phenomenon that

occurs today by using scientific procedures to

answer the problem actually.

Rumusan masalah

Pengumpulan
Referensi

Analisis
Metode

-Buku
-Jurnal
-Paper

Pembangunan Perangkat Lunak
Prototype

Analisis Kebutuhan
Data

Pembangunan
Prototype

Evaluasi
Prototype

Pengujian Aplikasi

Kesimpulan

Figure 1. Research Method

In the flow of research methods carried out are

the stages that will be carried out :

1. Reference Collection

At this stage collect journals and papers related

to this research and search for books to explore the

material about pathfinding algorithms, A *

algorithms, and Lifelong Planning A * algorithms.

2. Method Analyst

then do the analysis. Analyzing the Lifelong

Planning Algorithm A * method.

3. Software Development

The model of the software development process

used is the Prototype model. The steps in the

Prototype model are.

a. Analisyst

Analyze the things needed to identify

Pathfinding steps. In this stage a method

analysis is carried out and also the collection of

information and data needs by collecting

journals, papers, and information relating to the

research that will be conducted.

b. Data needs

The data collection stage is in the form of

the number of wall barriers, the number of npc,

and the destination point.

c. Prototype Development

the implementation phase of the analysis

process and system data requirements that have

been carried out.

d. Prototoype Evaluatioan

The testing phase of the prototype

application that was built.

4. Aplication Testing

Application Testing is testing the methods that

have been implemented into the program.

5. Research Result

The results of the study are the final stage in this

study. The tests performed produce multi agent

NPC steps and good accuracy or not.

2. THE CONTENT OF RESEARCH

2.1 Game labirynth

In general, mazes are made for entertainment

purposes. In real life, labyrinths can be found in

small road arrangements or alleys in residential

areas. It is very difficult if someone who is foreign

to the area to find a way. Labirin is a puzzle in the

form of complex road branching and has many dead

ends. The aim of the game is that players must find

a way out of an entrance to one or more exits. It can

also be the condition of the player winning, that is

when he reaches a point or destination in the

labyrinth.

In everyday life there are several labyrinth

applications that can be found especially in the

game industry, because the labyrinth challenges

players to find a way out from a predetermined

point. Besides that in some countries a maze of

human size is created and challenges people to

enter it, as one of the attractions to attract tourists

[7].

The following is a picture of one of the maze

games:

Figure 2. Game labirynth

2.2 Pathfinding

Pathfinding is one application that is handled by

artificial intelligence using the search algorithm [3].

The application that can be done with

pathfinding is to search the road on a map and

search for routes or paths in a game. The

pathfinding algorithm that is used must be able to

recognize the path and all map elements that cannot

be skipped. A good pathfinding algorithm can be

used to detect a number of obstacles that exist on

the road and find a path to avoid them, so that the

path taken is shorter than it should be if it doesn't

use the pathfinding algorithm.

See the illustration in Figure 3

Figure 3. Routing without pathfinding

In Figure 3. from the beginning that is green

towards the end, without the pathfinding algorithm,

npc will only check for obstacles or obstacles from

the surrounding environment. The unit will move

forward to reach the destination, only after

approaching the obstacle, then walking to the right

on the way.

‘

Figure 4. Determining routes with pathfinding

Next, determining the path with the pathfinding

algorithm in Figure 4. will plan the way forward to

find shorter paths and avoid obstacles or obstacles

symbolized by the light blue line to reach the

destination, without walking into an obstacle or

obstacle. therefore the function of the pathfinding

algorithm is important to solve some problems in

determining paths.

2.3 Algorithm Lifelong Plannning A* (LPA*)

Lifelong Planning A * is an incremental version

of A *, which can adapt to changes in the graph

without recalculating the entire graph, by updating

the g-value (distance from the start) from the

previous search during the current search to fix it

when needed. Lifelong Planning A * uses

heuristics, which are the lower bound for the path

cost of the node given to the destination. The first

search is the same as version A * which breaks the

connection between nodes with the same f value

and supports a smaller g value. Using the

calculation algorithm as follows.

Dimana :

- S = node

- predecessors from s =

- Cost travel from point s to Point

s’=

- Start Point =
- Start distance= Length from closest Sstart to

S
- g(s) = Estimation start distance g*(s)

 The following is an algorithm from LPA* :

Figure 5. Algorithm Lifelong Planning A*

2.4. System Analyst

The system that was built was the Pathfinding

NPC system in the labyrinth game. This system

calculates the steps of several NPCs from the initial

location to the destination. The following is a

Figure of the system to be built:

procedure Kalkulasikey(s)

return [min(g(s), rhs(s)) + h(s); min(g(s),

rhs(s))];

procedure inisialisasi()

U = ∅;

for all s ∈ S rhs(s) = g(s) = ∞;

rhs(sstart) = 0;
U.tambah(sstart, [h(sstart); 0]);

procedure UpdateSimpul(u)

if (u ƒ= sstart) rhs(u) = minsr

∈pred(u)(g(st) + c(st, u));

if (u ∈ U) U.hapus(u);

if (g(u) ƒ= rhs(u)) U.tambah(u,

Kalkulasikey(u));

procedure Hitungjalurterpendek ()

while (U.TopKey()<̇ Kalkulasikey(sgoal) OR

rhs(sgoal) =

u = U.Pop();

if (g(u) > rhs(u))

g(u) = rhs(u);

for all s ∈ succ(u) UpdateSimpul(s);

 else

g(u) = ∞;

 for all s ∈ succ(u) ∪ {u}

UpdateSimpul(s);

procedure Main()

Inisialisasi();

Hitungjalurterpendek();

 Tunggu cost berubah;

 for semua titik (u, v) dengan cost titik

yang berubah

 Update cost titik c(u, v);

 UpdateSimpul(v);

MASUKAN

PROSES

Menentukan pasangan
titik NPC dan tujuan

Titik koordinat
NPC

Titik koordinat
tujuan

Jumlah
NPC

Menghitung langkah
NPC ke tujuan

OUTPUT

Menghitung
langkah dari NPC ke

tujuan yang baru

Jalur tercepat
yang sudah tidak

terhalang npc

Pasangan npc
dan tujuan

Langkah
 npc

Menghitung apakah
ada npc yang
menghalangi

 Figure 6. General system figure

2.5 Input Analyst

Input analysis explains the input data that will

be needed in the application of the LPA *

algorithm. Input analysis is needed in the LPA

algorithm * namely the Agent's initial position,

Agent's final position, obstacle position and search

depth. Before calculating using the LPA algorithm

* the actual cost will be calculated on the path

itself. The map used in this simulation with a pixel

scale measuring 400 pixels wide and 600 pixels

high. One layer is stored in a grid (a small grid) that

is dynamic where the user can determine the

number of grids. Each grid has a size of 20 pixels

wide and 20 pixels high, sample folders with a

width of 20 pixels and a height of 20 pixels can be

seen in Figure 7. The following:

Figure 7. Screen size description

To simplify the calculation, there are several

values that will be simplified. First the node value

that was 20x20 pixels was changed to 1x1, meaning

that node distance 1 to another node is 1. So each

node has the same cost, namely 1 horizontally and

vertically. Movements can only be diagonal and

vertical.

2.6 Sample Case

To better understand the Lifelong Planning A *

algorithm, it can be seen from the example as in

Figure 8. It is assumed that in the simulation there

are 2 Agents (blue and red) who have their own

goals, besides that there is also a barrier wall.

Figure 8. Initial conditions for Search LPA *

The first process is to calculate the heuristics

from the Agent to the goal, find the shortest path

from the initial node, node storage uses three

dimensions of space-time (x, y, time). After

performing the initial calculation, and the initial

path has been found, each agent moves to the

destination of the closest node, such as Figure 3.4

below:

Figure 9. Initial condition with the path to be

passed

The following is the heuristic of Agent 1 to goal

1 and Agent 2 to goal 2 using manhattan distance
0 1 2 3 4 5 6 7 8 9 10 11 12

0

19 18 17 18 4 3 2 4 7 9

1

18 17 16 1 3 6 8

2

17 16 15 14 17 0 2 5 7

3

16 15 13 15 16 1 2 3 4 5 6

4

15 12 4 5 7

5

14 13 12 11 10 9 8 7 6 5 6 8

6

15 14 13 12 11 10 9 8 7 6 7 9

Figure 10. heuristic Agent 1

0 1 2 3 4 5 6 7 8 9 10 11 12

0

9 8 7 6 14 13 12 10 11 13

1

8 7 6 11 9 10 12

2

7 6 5 4 6 10 8 9 11

3

6 5 3 4 5 9 8 7 8 9 10

4

5 2 6 7 11

5

4 3 2 1 0 1 2 3 4 5 6 12

6

5 4 3 2 1 2 3 4 5 6 7 13

Figure 11. heuristic Agent 2

In this iteration the LPA * algorithm adds to the

currentWindow variable to + 1 currentWindow and

currentTime becomes the currentTime +1, after that

the next step is to check again, whether there are

units that must be recalculated or not, the unit to be

checked is taken randomly based on

currentWindow.

2.7 Testing

System testing from this research is conducted

in order to find out how the application that has

been made can be run accordingly or not. The

testing uses three techniques, namely functional

testing, performance testing and accuracy testing.

2.7.1 Functional Testing

Functional testing is done to check that the

functionality that has been made has been running

or not, the following is a scenario of functional

testing.

Table 1. Test results and cases (normal data)

Actio

n

What will be

expected

Result

Enter starting

point

Displays the

starting point on

the labyrinth

Be accepted

Enter the

destination

point

Displays the

destination point

on the labyrinth

Be accepted

Enter barrier

data

Displays a

barrier on the

labyrinth

Be accepted

Press the step

button

Displays the first

route of each NPC on

the labyrinth

Be accepted

Press the

Animation

button

Showing each

NPC moves

from the

starting point

menuju titik

akhir

Be accepted

Press the Stop

button

Display each

NPC in the last

position

Be accepted

Pressing the

reset button

Displays folders

with no

obstacles and

NPCs

Be accepted

Enter data

row values

Example: 13

Can be filled

with numbers

to enter row

value data

Be accepted

 Based on the testing of each functional using

the black box method that has been made, it is

concluded that the system created has worked in

accordance with the expected functional.

2.7.2 Performance Testing

The performance to be tested on the application

that has been made is the travel time from the initial

position to the final position of each unit and the

number of vertices examined in each cycle.

The performance tested on the application that

has been made is the node examined and the time

taken resulting from the implementation of a

minimum order of 5 x 5 without a barrier with the

number of agents from 2 to 8.

Table 2. Node expansion test results

The results of testing the execution time on

orders 5x5, 10x10 and 15x15 without a barrier with

the number of agents from 2 - 8 can be seen in

Table 3.

Table 3. Results of execution time

 2.7.3 Accuracy Testing

After performance testing, it will be done with

accuracy testing using the LPA * and A * algorithm

30 times by using a barrier and the target and the

Agent placed randomly. example of the barrier as

follows:

Ordo

\ Total

2 4 6 8

5X5 96 ms 357 ms 771 ms 892ms

10X10 309 ms 870 ms 1074 ms 1798 ms

15X15 622 ms 1154

ms

1793 ms 2486 ms

Ordo \

jumlah

unit

2 4 6 8

5X5 4.33ms 8.81ms 15.06ms 55.46ms

10X10 38.68 ms 60.16ms 90.99ms 107.46ms

15X15 60.25 ms 93.12ms 141.77ms 166.99ms

Figure 12. example of accuracy test

The results of testing the accuracy of Agents 2 -

8 by testing the number that found the path, the

amount taken and accuracy can be seen in Table 4

and Table 5.

Table 4 . accuracy test LPA*

Total

Agent

Agent on

track

Node

taken

Accuracy(

%)

2 30 10 100,0

4 29 11 96,7

6 26 13 86,7

8 25 15 83,3

Average accuracy 91,7

Table 5 . accuracy test A*

3. CONCLUSIONS AND SUGGESTIONS

3.1 Conclusion

Based on the results of analysis, implementation

and testing, conclusions can be taken as follows:

1. The Lifelong Planning A * algorithm can be

used to pathfinding many npc Agents in a maze

game.

2. Based on the accuracy testing carried out using

8 Agents and as many as 30 repetitions it is

known that the level of accuracy in the success

of the NPC Agent that found its path is 25

Agents with a total of 15 nodes taken. The level

of accuracy has a percentage of 91.7%. And it

has a velocity value of 166,999 ms in the length

of execution time with a 15x15 order and 8

agents so that it can be said that the level of

accuracy in the application of the Lifelong

Planning A * algorithm is good.

3.2 Suggestion

The advice that can be given for further

development, namely for the application of the A *

lifelong algorithm, can be tried by adding the

number of goals, using the latest variant of the

latest shortest path search algorithm, and also

increasing the number of behaviors of NPCs

thereby reducing failure in determining path

searches.

BIIBLIOGRAPHY

[1] Ramadhan, Ilham. 2017. “Implementasi

Algoritma Jump Point Search Pada NPC

Musuh Untuk Mengejar Pemain Dalam Game

Labirin (Skripsi)”. Bandung: Universitas

Komputer Indonesia

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Henry, Samuel. 2010. Cerdas dengan Game.

Jakarta: PT Gramedia Pustaka Utama.

Asmiatun, Siti. 2017. Belajar Membuat Game

2D dan 3D Menggunakan Unit. Yogyakarta :

Penerbit Budi Utama.

Teresa,Dillon. 2004. Adventure Games for

Learning and Storytelling. A Futurelab

prototype context paper: Adventure Author,

FutureLab Report.

Andang, Ismail. 2009. Education Games

(Menjadi cerdas dan ceria dengan permainan

edukatif). Yogyakarta : Pilar Media

Thomas. 2006. Genre and game studies :

Toward a critical approach to video game

genres. Simulation & Gaming, Vol. 37,

University of Melbourne

Imam Ahmad, W. W. 2017. Penerapan

Algoritma A Star (A*) pada Game Petualangan

Labirin Berbasis Android. Jurnal Ilmu

Komputer Dan Informatika.

Kusumadewi, Sri. 2002. Artificial Intelligence .

Yogyakarta, Graha Ilmu.

Suyanto. 2007. Artificial Intelligence.

Bandung: Informatika.

 J.E. Kendall dan K.E. Kendall. 2006. Systems

Analysis and Design Berbasis Android.

Bandung : Informatika.

Surianto, Sri Anggraini. 2014. “Implementasi

Algoritma Iterative Deepening A* (IDA*)

Dengan Stochastic Node Caching (SNC) Untuk

Pathfinding Musuh Pada Game Labirin

(Skripsi)”. Bandung: Universitas Komputer

Indonesia

Total
Agent

Agent on

track
Node
taken

Accuracy(%)

2 30 17 100,0

4 25 18 83,3

6 23 19 76,7

8 19 22 63,3

Average accuracy 80,8

