BABII

LANDASAN TEORI

Dalam bab ini akan di bahas spesies burung yang akan di monitoring pemberian pakan secara otomatis. Kemudian komponen hardware dari sistem monitoring pemberi pakan burung otomatis.

2.1 Burung Kacamata

Kacamata sangihe (Zosterops nehrkorni) adalah spesies burung dari keluarga burung kacamata. Kacamata sangihe adalah binatang endemik kepulauan sangihe, Indonesia adalah salah satu dari sekitar 22 jenis burung kacamata (pleci) yang terdapat di Indonesia [2]. Burung kacamata sangihe terancam punah oleh IUCN Redlist dan Birdlife dimasukkan dalam status konsevasi kritis (Critically Endangered). Status keterancaman tertinggi lantaran dianggarkan burung endemik sangihe ini jumlahnya kurang dari 50 ekor burung dewasa. Kacamata sangihe memiliki habitat di kawasan hutan, pegunungan, dengan iklim subtropik atau tropis lembab. Binatang ini termasuk binatang yang terancam karena kehilangan habitat. Dulunya burung ini dianggap sebagai bagian dari spesies Zosterops atrifrons (Kacamata dahi-hitam), namun kemudian spesies kacamata dahi hitam ini dibedakan menjadi tiga spesies yakni *Zosterops* atrifrons, Zosterops stalkeri (Kacamata seram), dan Zosterops nehrkorni (Kacamata sangihe).

Gambar 2.1 Burung Kacamata

Burung kacamata atau dikenal juga sebagai pleci, merupakan salah satu spesies burung yang berasal dari genus *Zosterops*, famili *Zosteropidae* dan ordo

Passeriformes (burung tengger). Ini merupakan keluarga burung yang sangat besar, dengan total anggota inti sekitar 75 jenis. Sebagian spesiesnya juga terbagi atas beberapa sub spesies, salah satunya kacamata biasa. Burung kacamata biasa mempunyai nama ilmiah Zosterops palpebrosus. Jenis ini setidaknya terbagi atas empat ras atau sub spesies, yang sebagian besar bisa kita temukan di Indonesia [3].

2.2 Arduino Uno

Arduino Uno merupakan mikrokontroler yang berbasis ATmega328p mikrokontroler ini memiliki 14 digital Pin *input/output* di mana 6 analog *output* dapat digunakan sebagai *output* PWM, 6 analog *input*, 16MHz *quartz crystal*, koneksi USB, *Jack DC*, sebuah ICSP *header* dan tombol reset [4].

Gambar 2.2 Perangkat Arduino Uno sebagai mikrokontroler

Untuk spesifikasi Arduino Uno dapat dilihat pada tabel 2.1

Tabel 2.1 Spesifikasi Arduino Uno

No.	Fitur	Spesifikasi
1	Mikrokontroler	ATmega328P
2	Tegangan Operasi	5 Volt
3	Pin Digital I/O	14 dari total 20 Pin I/O
4	Pin PWM	6
5	Pin Analog Input	6
6	Arus DC per Pin I/O	20 mA
7	Arus DC untuk Pin 3.3V	50 mA
8	Kapasitas Memori Program	32 KB ATmega328P, 0,5 KB digunakan bootloader

9	Kapasitas RAM	2 KB
10	Kecepatan Clock	16 MHz
11	Antarmuka Serial	1x UART (RX/TX)
12	Antarmuka USB	1x USB 2.0 Type B
13	Sistem Pengembangan	Arduino IDE
14	Tegangan Referensi ADC	5 Volt
15	Resolusi ADC	10-bit
16	Fitur Tambahan	EEPROM, Timer, Interrupts, SPI, I2C

2.3 Sensor IR

Sensor IR (*Infrared*) adalah perangkat elektronik yang digunakan untuk mendeteksi, mengukur, atau mengambil, data dari radiasi *infrared* dalam lingkungan sekitarnya.

Gambar 2.3 Perangkat Sensor IR

Radiasi *infrared*, sensor akan mendeteksinya dan menghasilkan keluaran sesuai dengan karakteristik radiasi yang diterima. Untuk spesifikasi Sensor IR dapat dilihat pada tabel 2.2 [5].

Tabel 2.2 Spesifikasi Sensor IR

No.	Fitur	Spesifikasi
1	Rentang Panjang Gelombang	700 nm – 1100 nm
2	Jarak Operasional	0 cm – 200 cm
3	Tipe Deteksi	Pasif, Aktif, Dual

4	Tipe Output	Analog, Digital, PWM
5	Tegangan Kerja	3.3V -5V
6	Arus Kerja	20mA – 50mA
7	Sudut Bidang Pandang	30°, 60°, 120°
8	Respons Waktu	μs (mikro detik), ms (mili detik)
9	Kepekaan Sensor	10 mV/cm, 100 lux
10	Sumber Cahaya IR	LED IR, Laser IR
11	Lingkungan Operasional	Suhu, Kelembaban, Kondisi Lingkungan
12	Interface	Analog, Digital,I2C, SPI, UART

2.4 Water Float Switch

Water float switch (atau juga disebut float switch) adalah perangkat yang digunakan untuk mendeteksi tingkat air atau cairan dalam suatu wadah atau tangki. Float switch biasanya terdiri dari dua bagian utama: pelampung (float) dan saklar (switch).

Gambar 2.4 Saklar Water Float Switch

Ketika tingkat air naik atau turun, pelampung akan mengikuti perubahan tingkat air. Ketika pelampung mencapai tingkat tertentu, maka akan menggerakkan saklar untuk mengalihkan arus listrik, memberikan sinyal bahwa tingkat air telah mencapai batas yang ditentukan. Sinyal ini kemudian dapat digunakan untuk mengendalikan pompa air, alarm atau perangkat lainnya yang terkait dengan tingkat air dalam tangki .

2.5 Motor Servo

Motor servo adalah jenis motor listrik yang digunakan untuk menggerakkan mekanisme dengan presisi tinggi. Motor ini memiliki kemampuan untuk mengatur sudut putaran secara akurat dan mempertahankan posisi yang ditentukan.

Gambar 2.5 Perangkat Motor Servo Pengontrol

Motor servo umumnya digunakan dalam aplikasi yang membutuhkan kontrol gerakan yang presisi seperti robotika, kendali posisi, kendaraan otomotif, dan peralatan industri. Untuk spesifikasi Motor Servo dapat dilihat pada tabel 2.3 [6].

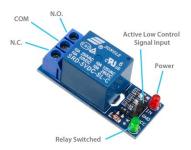
Tabel 2.3 Spesifikasi Motor Servo

No.	Fitur	Spesifikasi
1	Tipe Motor	Motor DC
2	Tegangan Operasi	Umumnya 4.8V-6V
3	Torsi Maksimum	1 kg/cm, 2 kg/cm, 10 kg/cm
4	Kecepatan Rotasi Maksimum	60°/ detik, 120°/ detik, 300°/ detik
5	Resolusi Posisi	10-bit, 12-bit, 16-bit
6	Sudut Putar	Umumnya: 180°, 360°, atau kontinu (0°
		360°)
7	Tipe Kontrol	PWM(Pulse Width Modulation), Analog,
8	Tegangan Kerja	4.8V - 6V
9	Dimensi Fisik	Ukuran fisik motor servo (panjang, lebar, tinggi)
10	Interface	Kontrol kabel 3-Pin, 4-Pin konektor

2.6 Water Pump Mini

Water Pump Mini ialah sebuah pompa air kecil yang mempunyai banyak fungsi untuk kebutuhan pompa air dalam rumah. Cocok untuk proyek pengontrol atau pompa air ini memang tidak membutuhkan daya listrik yang cukup besar, tercatat pompa air mini 12 V ini hanya membutuhkan daya listrik sekitar 12 V ketika berfungsi dan 6 V ketika tidak dipakai dan juga hanya membutuhkan sekitar 0,5 sampai 0,7 Ampere ketika pompa air sedang berfungsi dan apabila air ini tidak berfungsi hanya membutuhkan daya sekitar 0,18 Ampere.

Gambar 2.6 Perangkat Water Pump Mini


Untuk spesifikasi Water Pump Mini dapat dilihat pada tabel 2.4.

Tabel 2.4 Spesifikasi Water Pump Mini

No.	Fitur	Spesifikasi
1	Jenis Pompa	Water Pump Mini (Pompa Air Mini)
2	Tegangan Kerja	3V - 12V
3	Kapasitas Aliran	80-120 liter per jam (LPH)
4	Tekanan Maksimum	1-3 bar
5	Ukuran Fisik	Dimensi fisik pompa air (panjang, lebar, tinggi)
6	Bahan Konstruksi	Plastik, logam, atau kombinasi dari keduanya
7	Sumber Daya	Biasanya menggunakan baterai atau sumber daya eksternal
8	Interface	Kabel atau konektor untuk koneksi listrik

2.7 Modul Relay

Modul *relay* adalah perangkat elektronik yang digunakan untuk mengontrol aliran listrik dengan menggunakan sinyal kontrol dari perangkat lain, seperti mikrokontroler atau saklar. *Relay* berfungsi sebagai saklar elektronik yang dapat mengendalikan perangkat atau rangkaian listrik lainya, baik itu menyalakan atau mematikan aliran listrik.

Gambar 2.7 Modul relay

Modul *relay* memiliki berbagai kegunaan kegunaan di berbagai bidang, seperti otomatisasi industri, sistem kendali rumah pintar, peralatan medis, dan lain sebagainya. Dalam sistem otomatisasi, modul *relay* sering digunakan untuk mengendalikan peralatan besar seperti motor, lampu, pompa. Untuk spesifikasi Modul *Relay* dapat dilihat pada tabel 2.5.

Tabel 2.5 Spesifikasi Modul Relay

No.	Spesifikasi	Deskripsi
1	Tegangan Kerja	tegangan yang diterima oleh modul relay
2	Arus Saklar	Rentang arus yang dapat ditangani oleh modul <i>relay</i>
3	Kontak Saklar	Jumlah kontak saklar yang ada pada modul relay
4	Jenis Kontak Saklar	Yang digunakan seperti NO atau NC)
5	Kapasitas Beban	tegangan dan arus yang dapat ditangani oleh kontak saklar modul <i>relay</i>
6	Tipe Kumparan	tipe kumparan, seperti DC atau AC

7	Tenaga Kumparan	Tegangan yang diperlukan untuk mengaktifkan kumparan
		relay
8	Konsumsi Arus	kumparan relay saat diaktifkan
	Kumparan	
9	Optoisolator	modul relay dilengkapi dengan optoisolator untuk isolasi
10	Dimensi	Dimensi fisik modul <i>relay</i> , seperti panjang, lebar, dan
		tinggi
11	Interface Kontrol	Jenis antarmuka atau metode kontrol
		yang digunakan untuk mengaktifkan modul relay
12	Perlindungan	Fitur perlindungan seperti perlindungan
		terhadap lonjakan tegangan atau arus

2.8 PSU *Dual* Voltase

PSU (*Power Supply Unit*) *dual voltase* merujuk jenis Power Supply yang dapat beroperasi pada dua tegangan *input* yang berbeda. Biasanya, PSU ini memiliki kemampuan untuk menerima *input* tegangan 110-120V AC dan 220-240V AC.

Gambar 2.8 PSU Dual Voltase

Konsep dasar di balik PSU *dual* voltase adalah fleksibilitas. Dengan adanya PSU ini, pengguna dapat menggunakan perangkat di berbagai negara atau wilayah yang memiliki tegangan listrik yang berbeda. Misalnya, beberapa negara menggunakan 110V AC, sementara yang lain menggunakan 220V AC. Dengan PSU *dual* voltase, pengguna tidak perlu khawatir tentang masalah kompabilitas tegangan.

2.9 LCD (Liquid Crystal Display)

LCD (*Liquid Crystal Display*) adalah teknologi tampilan yang umum digunakan pada perangkat elektronik seperti monitor komputer, televisi, smartphone dan banyak lagi. LCD menggunakan panel kristal cair yang ditempatkan di antara dua lapisan panel kaca yang menghasilkan tampilan gambar atau teks.

Gambar 2.9 LCD (Liquid Crystal Display)

LCD meliputi konsumsi daya yang rendah, ukuran yang tipis, sudut pandang yang luas, reproduksi warna yang baik, dan kemampuan untuk menampilkan gambar statis dengan baik. Namun, LCD juga memiliki beberapa keterbatasan, seperti sudut pandang terbatas, kurangnya kemampuan untuk menghasilkan warna hitam yang benar-benar pekat dan adanya efek motion blur saat menampilkan objek yang bergerak cepat. Untuk spesifikasi LCD dapat dilihat pada tabel 2.6 [7].

Tabel 2.6 spesifikasi LCD

No.	Fitur	Deskripsi
1	Tipe LCD	Karakter (Text-based LCD)
2	Jumlah Baris	2 baris
3	Jumlah Karakter	16 karakterr
4	Karakter Display	Alfanumerik (termasuk angka, huruf, dan simbol)
5	Kontras	Rasio kontras antara warna karakter dan latar
6	Kecepatan Refresh	Waktu respons untuk menampilkan karakter baru

7	Backlight	Ada/tidak ada <i>backlight</i>
8	Interface	Paralel (misalnya, 4-bit atau 8-bit)
9	Tegangan Input	Yang dibutuhkan (misalnya, 5 V
10	Konsumsi Daya	Daya yang dikonsumsi oleh LCD dalam watt
11	Dimensi dan Berat	Ukuran fisik dan berat LCD