BAB II

STUDI PUSTAKA

2.1 Defenisi Jalan

Jalan adalah suatu prasarana yang meliputi segala bagian jalan termasuk bangunan pelengkap dan perlengkapannya yang diperuntukkan bagi lalu lintas yang berada di atas permukaan tanah, di bawah permukaan tanah, dan/atau air serta di atas permukaan ait, kecuali jalan kereta api, jalan lori, dan jalan kabel (UU RI No. 38 Tahun 2004).

Jalan raya adalah jalur-jalur tanah di atas permukaan bumi yang dibuat oleh manusia dengan bentuk, ukuran dan jenis konstruksinya sehingga dapat digunakan untuk menyalurkan lalu lintas orang, hewan dan kendaraan yang mengangkut barang dari suatu tempat ke tempat lainnya dengan mudah dan cepat. (Clarkson H. Oglesby. 1999) Jalan raya juga merupakan prasarana transportasi penting yang dapat meningkatkan pergerakan dalam proses perkembangan ekonomi dan melahirkan perusahaan industri. (Falderika, 2021)

2.2 Klasifikasi Jalan Berdasarkan Status dan Kelas Jalan

2.2.1 Status Jalan

Status Jalan diatur dalam Undang-Undang Republik Indonesia Nomor 38 Tahun 2006 tentang jalan, maka sesuai dengan status jalan dikelompokkan menjadi:

1. Jalan Nasional

Jalan Nasional tediri dari jalan arteri primer, jalan kolektor yang menghubungkan antar ibukota provinsi, jalan tol, jalan strategis nasional. Penyelenggara Jalan Nasional merupakan kewenangan Kementerian Pekerjaan Umum dan Perumahan Rakyat, yaitu Direktorat Jendral Bina Marga yang dalam pelaksanaan tugas penyelengaraan jalan naasional dibentuk Balai Besar Pelaksanaan Jalan Nasional sesuai dengan wilayah kerjanya masing-masing. Sesuai dengan kewenangannya, maka ruas-ruas jalan nasional ditetapkan oleh Menteri Pekerjaan Umum dan Perumahan Rakyat dalam bentuk Surat Keputusan (SK) Menteri PUPR.

2. Jalan Provinsi

Penyelenggara Jalan Provinsi merupakan kewenangan Pemerintah Provinsi. Jalan provinsi terdiri dari:

- a. Jalan kolektor primer yang menghubungkan ibukota provinsi dengan ibukota kabupaten atau kota.
- b. Jalan kolektor primer yang menghubungkan antar ibukota kabupaten atau kota.
- c. Jalan strategis provinsi.
- d. Jalan di daerah khusus ibukota Jakarta.

Ruas-tuas jalan proinsi ditetapkan oleh Gubernur dalam Surat Keputusan (SK) Gubernur.

3. Jalan Kabupaten

Penyelenggara Jalan Kabupaten merupakan kewenagan Pemerintah Kabupaten. Jalan Kabupaten terdiri atas:

- a. Jalan kolektor primer yang tidak termasukjalan nasional dan jalan provinsi.
- b. Jalan lokal primer yang menghubungkan ibukota kabupaten dengan ibukota kecamatan, ibukota kecamatan dengan pusat desa antar ibukota kecamatan, ibukota kecamatan dengan desa, dan antar desa.
- c. Jalan sekunder yang tidak termasuk jalan provinsi dan jalan sekunder dalam kota.
- d. Jalan strategis kabupaten.

Ruas-ruas jalan tersebut ditetapkan oleh Bupati dengan Surat Keputusan (SK) Bupati.

4. Jalan Kota

Jalan kota adalah jalan umum pada jaringan jalan sekunder di dalam kota. Jalan kota merupakan kewenangan Pemerintah Kota. Ruas-ruas jalan kota ditetapkan oleh Walikota dengan Surat Keputusan (SK) Walikota.

5. Jalan Desa

Jalan desa adalah jalan lingkungan primer dan jalan lokal primer yang tidak termasuk jalan kabupaten di dalam Kawasan perdesaan, dan merupakan jalan umum yang menghubungkan Kawasan dan/atau antar permukiman di dalam desa.

2.2.2 Kelas Jalan

Kelas Jalan diatur dalam UU Nomor 22 tahun 2009 tentang lalu lintas dan angkutan jalan. Jalan dikelompokkan dalam beberapa kelas berdasarkan:

- a. Fungsi dan intentitas lalu lintas guna kepentingan pengaturan penggunaan jalan dan kelancaran lalu lintas angkutan jalan.
- b. Daya dukung untuk menerima muatan sumbu terberat dan dimensi kendaraan bermotor.

Pengelompokan jalan menurut kelas jalan terdiri dari:

a. Jalan Kelas I

Jalan kelas I adalah jalan arteri dan kolektor yang dapat dilalui kendaraan bermotor dengan ukuran lebar tidak melebihi 2.500 mm, ukuran panjang tidak melebihi 18.000 mm, ukuran paling tinggi 4.200 mm, dan muatan sumbu terberat 8 ton

b. Jalan Kelas II

Jalan kelas II adalah jalan arteri, kolektor, lokal, dan lingkungan yang dapat dilalui kendaraan bermotor dengan ukuran lebar tidak melebihi 2.500 mm, ukuran panjang tidak melebihi 12.000 mm, ukuran paling tinggi 4.200 mm, dan muatan sumbu terberat 8 ton.

c. Jalan Kelas III

Jalan kelas III dalah jalan arteri, kolektor, lokal, dan lingkungan yang dapat dilalui kendaraan bermotor dengan ukuran lebar tidak melebihi 2.500 mm,

ukuran panjang tidak melebihi 9.000 mm, ukuran paling tinggi 4.200 mm, dan muatan sumbu terberat 8 ton. Dalam keadaan tertentu daya dukung jalan kelas III dapat ditetapkan muatan sumbu terberat kurang dari 8 ton.

d. Jalan Kelas Khusus

Jalas kelas khusus adalah jalan arteri yang dapat dilalui kendaraan bermotor dengan ukuran lebar melebihi 2.500 mm, ukuran panjang melebihi 18.000 mm, ukuran paling tinggi 4.200 mm, dan muatan sumbu terberat lebuh dari 10 ton.

Penetapan kelas jalan pada setiap ruas jalan yang dinyatakan dengan rambu lalu lintas dilakukan oleh:

- a. Pemerintah pusat untuk jalan nasional.
- b. Pemerintah provinsi untuk jalan provinsi.
- c. Pemerintah kabupaten untukk jalan kabupaten.
- d. Pemerintah kota untuk jalan kota.

2.3 Klasifikasi Jalan Berdasarkan Fungsi

Dalam UU RI Nomor 38 Tahun 2004 Jalan adalah suatu prasaranan transportasi yang meliputi segala bagian jalan termasuk bangunan pelengkap dan perlengkapannya yang diperuntukkan bagi lalu lintas yang beraa di atas permukaan tanah, dibawah permukaan tanah dan/atau air, jalan lori dan jalan kabel. Jalan mempunyai peranan penting terutama menyangkut perwujudan perkembangan antar wilayah yang seimbang, pemerataan dan keamanan nasional dalam rangka mewujudkan pembangunan nasional.

Berdasarkan Peraturan Pemerintah Nomor 34 Tahun 2006 tentang jalan dijelaskan bahwa penyelenggaraan jalaan yang di konsepsional dan menyeluruh perlu dilihat bahwa jalan sebagai duatu kesatuan system jaringan jalan sekunder. Pada setiap sistem jaringan jalan diadakan pengelompokan jalan menurut fungsi, status, dan kelas jalan. Pengelompokan jalan berdasarkan status memberikan kewenangan kepada Pemerintah untuk menyelenggarakan jalan yang mempunyai layanan nasional dan pemerintah daerah untuk menyelenggarakan alan di wilayahnya sesuai dengan prinsip-prinsip otonomi daerah.

2.3.1 Sistem Jaringan Jalan

Sistem jaringan jalan disusun dengan mengacu pada rencana tata ruang wilayah dan dengan memperhatikan keterhubungan antarkawasan dan/atau dalam Kawasan perkotaan, dan kawasan perdesaan. Berdasarkan sistem jaringan jalan, maka dikenal 2 istilah, yaitu:

1. Sistem Jaringan Jalan Primer

Jaringan jalan primer disusun berdasarkan rencana tata ruang dan pelayanan distribusi barang dan jasa untuk pengembangan semua wilayah di tingkat nasional, dengan menghubungkan semua simpul jasa distribusi yang berwujud pusat-pusat kegiatan berikut ini:

- Menghubungakan secara menerus pusat kegiatan nasional, pusat kegitan wilayah, pusat kegiatan lokal sampai ke pusat kegiatan lingkungan.
- Menghubungkan antarpusat kegiatan nasional.

Sistem jaringan jalan primer merupakan sistem jaringan jalan yang menghubungkan antarkawasan perkotaan, diatur secara berjenjang sesuai dengan peran perkotaan yang berhubungan. Untuk melayani lalu lintas menerus maka ruas-ruas jalan dalam system jaringan jalan primer tidak terputuswalaupun memasuki kawasan perkotaan.

2. Sistam Jaringan Jalan Sekunder

Jaringan jalan sekunder disusun berdasarkan rencana tata ruang wilayah kabupaten/kota dan pelayanan distribusi barang dan jasa untuk masyarakat di dalam kawasan perkotaan yang menghubungkan secara menerus Kawasan yang mempunyai fungsi primer, fungsi sekunder pertama, fungsi sekunder kedua, fungsi sekunder ketiga, dan seterusnya sampai ke persil. Sistem jaringan jalan sekunder merupakan sistem jaringan jalan yang mnghubungkan antarkawasan di dalam perkotaan yang diatur secara berjenjang sesuai dengan fungsi Kawasan yang dihubungkannya.

2.3.2 Fungsi Jalan

Berdasarkan fungsinya, maka jalan dibedakan menjadi beberapa fungsi, yaitu:

1. Jalan Arteri

a. Jalan Arteri Primer

Jalan yang menghubungkan secara berdaya guna antarpusat kegiatan nasional atau antara pusat kegiatan nasionaldengan pusat kegiatan wilayah. Didesain berdasarkan kecepatan rencana paling rendah 60 km/jam, lebar badan jalan minimal 11 m, lalu lintas jarak jauh tidak boleh terganggu lalu lintas ulang alik, lalu lintas lokal dan kegiatan lokal, jumlah jalan masuk ke jalan arteri primer dibatasi, serta tidak boleh terputus di Kawasan perkotaan.

b. Jalan Arteri Sekunder

Jalan yang menghubungkan kawasan primer dengan kawasan sekunder kesatu, kawasan sekunder kesatu dengan kawasan sekunder kesatu, atau kawasan sekunder kesatu dengan kawasan sekunder kedua. Didesain berdasarkan kecepatan rencana paling rendah 30 km/jam dengan lebar badan jalan minimal 11 m, dan lalu lintas cepat tidak boleh terganggu oleh lalu lintas lambat.

2. Jalan Kolektor

a. Jalan Kolektor Primer

Jalan yang menghubungkan secara berdaya guna antara pusat kegiatan nasional dengan pusat kegiatan lokal, antarpusat kegiata wilayah, atau antara pusat kegiatan wilayah dengan pusat kegiatan lokal. Didesain berdasarkan kecepatan rencana paling rendah 40 km/jam dengan lebar badan jalan minimal 9 m dan jumlah jalan masuk dibatasi.

b. Jalan Kolektor Sekunder

Jalan yang menghubungkan kawasan sekunder kedua dengan kawasan sekunder kedua atau kawasan sekunder kedua dengan kawasan sekunder ketiga. Didesain berdasarkan kecepatan rencana paling rendah 20 km/jamdengan lebar badan jalan minimal 9 m dan lalu lintas cepat tidak boleh terganggu oleh lalu lintas lambat.

3. Jalan Lokal

a. Jalan Lokal Primer

Jalan yang menghubungkan secara berdaya guna pusat kegiatan nasional dengan pusat kegiatan lingkungan, pusat kegiatan wilayah dengan pusat kegiatan lingkungan, antarpusat kegiatan lokal, atau pusat kegiatan lokal dengan pusat kegiatan lingkungan, serta antarpusat kegiatan lingkungan. Didesain berdasarkan kecepatan rencana paling rendah 20 km/jam dengan lebar badan jalan minimal 7,5 m dan tidak boleh terputus di kawasan perdesaan.

b. Jalan Lokal Sekunder

Jalan yang menghubungkan kawasan sekunder kesatu dengan perumahan, kawasan sekunder kedua dengan perumahan, kawasan sekunder ketiga dan seterusnya sampai ke perumahan. Didesain berdasarkan kecepatan rencana paling rendah 10 km/jam dengan lebar badan jalan minimal 7,5 m.

4. Jalan Lingkungan

a. Jalan Lingkungan Primer

Jalan yang menghubungkan antarpusat kegiatan di dalam kawasan perdesaan dan jalan di dalam lingkungan perdesaan. Didesain berdasarkan kecepatan rencana paling rendah 15 km/jam dengan lebar badan jalan minimal 6,5 m untuk jalan yang diperuntukkan bagi kendaraan bermotor roda 3 atau lebih. Sedangkan jalan yang tidak diperuntukkan bagi kendaraan bermotor roda 3 atau lebih harus mempunyai lebar badan jala minimal 3,5 m.

b. Jalan Lingkungan Sekunder

Jalan yang menghubungkan antarpersil dalam kawasan perkotaan. Didesain berdasarkan kecepatan rencanan paling rendah 10 km/jam dengan lebar badan jalan minimal 6,5 m untuk jalan yang diperuntukkan bagi kendaraan bermotor roda 3 atau lebih. Sedangkan jalan yang tidak diperuntukkan bagi kendaraan bermotor roda 3 atau lebih haruis mempunyai lebar badan jalan minimal 35 m.

Lebar jalan paling sedikit 3,5 m ini dimaksudkan agar lebar jalur lalu lintas dapat mencapai 3 m, dengan demikian pada keadaan darurat dapat dilewati mobil dan kendaraan khusus lainnya seperti pemadam kebakaran, ambulan, dan sebagainya.

2.4 Pedoman Kapasitas Jalan Indonesia (PKJI 2014)

Pedoman kapasitas Jalan perkotaan ini merupakan bagian dari pedoman kapasitas jalan Indonesia 2014 (PKJI'14), diharapkan dapat memandu dan menjadi acuan teknis bagi para penyelenggara jalan, penyelenggara lalu lintas dan angkutan jalan, pengajar, praktisi baik di tingkat pusat maupun di daerah dalam melakukan perencanaan dan evaluasi kapasitas Jalan perkotaan.

Pedoman ini disusun dalam upaya memutakhirkan Manual Kapasitas Jalan Indonesia 1997 (MKJI'97) yang telah digunakan lebih dari 12 tahun sejak diterbitkan. Pedoman ini merupakan pemutakhiran kapasitas jalan dari MKJI'97 tentang Jalan Perkotaan yang selanjutnya disebut Pedoman Kapasitas Jalan perkotaan sebagai bagian dari Pedoman Kapasitas Jalan Indonesia 2014 (PKJI'14). PKJI'14 keseluruhan melingkupi:

- 1. Pendahuluan
- 2. Kapasitas Jalan Antar Kota
- 3. Kapasitas Jalan Perkotaan
- 4. Kapasitas Jalan Bebas Hambatan
- 5. Kapasitas Simpang APILL
- 6. Kapasitas Simpang
- 7. Kapasitas Jalinan dan Bundaran
- 8. Perangkat lunak kapasitas jalan yang akan dikemas dalam publikasi terpisah-pisah sesuai kemajuan pemutakhiran.

Pada metode PKJI 2014 pada umumnya terfokus pada nilai-nilai ekivalen mobil penumpang (emp) atau ekivalen kendaraan ringan (ekr), kapasitas dasar (C₀), dan cara penulisan. Nilai ekr mengecil sebagai akibat dari meningkatnya proporsi sepeda motor dalam arus lalu lintas yang juga mempengaruhi nilai C₀.

2.4.1 Ekivalen Kendaraan Ringan (ekr)

Ekivalen kendaraan ringan adalah salah satu dan ekr untuk kendaraan berat dan sepeda motor ditetapkan sesuai dengan yang ditunjukkan pada tabel dibawah.

Tabel 2.1 Ekivalen Kendaraan Ringan Untuk Jalan Terbagi dan Satu Arah

	Arus lalu lintas			
Tipe jalan	per lajur (kend/jam)	KR	КВ	SM
2/2TT	<3700	1	1,3	0,40
\(\alpha \lambda \lamb	≥ 1800	1	1,2	0,25

Sumber: PKJI 2014

Untuk kepentingan dalam pengolahan data, maka kendaraan tersebut dikasifikasikan sebagai berikut:

- a. Kendaraan ringan (KR) terdiri dari mobil penumpang, jeep, sedan, bus mini, pik-up, sbb.
- b. Kendaraan berat (KB) terdiri dari truk dan bus.
- c. Sepeda motor (SM).

2.4.2 Kecepatan Arus Bebas (VB)

Nilai V_B jenis KR ditetapkan sebagai kriteria dasar untuk kinerja segmen jalan, nilai V_B untuk KB dan SM ditetapkan hanya sebagai referensi. V_B untuk KR biasanya 10-15% lebih tinggi dari tipe kendaraan lainnya. V_B dihitung menggunakan persamaan dibawah:

$$V_B = (V_{BD} + V_{BL}) \times FV_{BHS} \times FV_{BUK}$$
.....(2.1)

Keterangan:

V_B = kecepatan arus bebas untuk KR pada kondisi lapangan (km/jam).

 V_{BD} = kecepatan arus bebas dasar untuk KR.

V_{BL} = nilai penyesuaian kecepatan akibat lebar jalan (km/jam).

 $FV_{BHS} = faktor penyesuaian kecepatan bebas akibat hambatan samping pada jalan yang memiliki bahu atau jalan yang dilengkapi kereb/trotoar dengan$

jarak kereb ke penghalang terdekat.

FV_{BUK} = faktor penyesuaian kecepatan bebas untuk ukuran kota.

Jika kondisi eksisting sama dengan dengan kondisi dasar (ideal), maka semua faktor penyesuaian menjadi 1,0 dan V_B menjadi sama dengan V_{BD} .

2.4.3 Penetapan Kapasitas (C)

Untuk tipe jalan 2/2TT, C ditentukan untuk total arus dua arah. Kapasitas segmen dapat dapat dihitung menggunakan persamaan.

$$C = C_0 \times FC_{LJ} \times FC_{PA} \times FC_{HS} \times FC_{UK}....(2.2)$$

Keterangan:

C = adalah kapasitas (skr/jam)

 $C_0 = \text{kapasitas dasar (skr/jam)}$

FC_{LJ} = faktor penyesuaian kapasitas terkait lebar lajur atau jalur lalu lintas

FC_{PA} = faktor penyesuaian kapasitas terkait pemisahan arah, hanya pada jalan tak terbagi

FC_{HS} = faktor penyesuaian kapasitas terkait KHS pada jalan berbahu atau berkereb

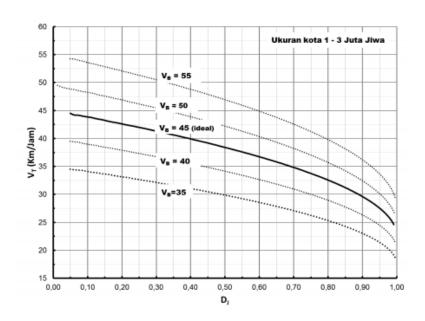
 FC_{UK} = faktor penyesuaian kapasitas terkait ukuran kota

2.4.4 Derajat Kejenuhan (D_J)

Derajat kejenuhan adalah ukuran utama yang digunakan untuk menetukan tingkat kinerja segmen jalan. Nilai D_J menunjukkan kualitas kinerja arus lalu lintas dan bervariasi antara nol sampai dengan satu. Nilai yang mendekati nol menunjukkan arus yang tidak jenuh yaitu kondisi arus yang lengan dimana kehadiran kendaraan lain tidak mempengaruhi kendaraan yang lainnya. Nilai yang mendekati 1 menunjukkan kondisi arus pada kondisi kapasitas, kepadatan arus sedang dengan dengan kecepatan arus tertentu yang dapat dipertahankan selama paling tidak satu jam. D_J dihitung menggunakan persamaan dibawah:

$$D_J = Q/C$$
.....(2.3)

Keterangan:


 D_J = derajat kejenuhan

Q = arus lalu lintas (skr/jam)

C = kapasitas (skr/jam)

2.4.5 Kecepatan Tempuh (V_T)

Kecepatan tempuh (V_T) merupakan kecepatan aktual kendaraan yang besarannya ditentukan berdasarkan fungsi dari D_J dan V_B yang ditentukan dalam bagian Derajat Kejenuhan dan Kecepatan Arus Bebas. Penentuan besar V_T dilakukan dengan menggunakan diagram dibawah:

Gambar 2.1 Hubungan VT dengan DJ, pada tipe jalan 2/2TT

2.4.6 Waktu Tempuh (W_T)

Waktu Tempuh (W_T) dapat diketahui berdasarkan nilai V_T dalam menempuh segmen ruas jalan yang dianalisis sepanjang L. Persamaan dibawah menggambarkan hubungan antara W_T , V_T , dan L:

$$W_T = L/V_T$$
.....(2.4)

Keterangan:

WT = waktu tempuh rata-rata kendaraan ringan (jam).

VT = kecepatan tempuh kendaraan ringan atau kecepatan rata-rata ruang kendaraan ringan (km/jam).

L = panjang segmen (km).

2.4.7 Kriteria Kelas Hambatan Samping

Hambatan samping adalah dampak terhadap kinerja lalu lintas yang berasal dari aktivitas samping segmen jalan. Hambatan samping yang umumnya sangat mempengaruhi kapasitas jalan adalah pejalan kaki, angkutan umum, dan kendaraan lain berhenti, kendaraan tak bermotor, kendaraan masuk dan keluar dari fungsi tata guna lahan di samping jalan.

Kriteria hambatan samping ditetapkan dari jumlah total nilai frekuensi kejadian setiap jenis hambatan samping yang diperhitungkan yang masing-masing telah dikalikan dengan bobotnya. Frekuensi kejadian hambatan samping dihitung berdasarkan pengamatan dilapangan untuk periode waktu satu jam disepanjang segmen yang diamati. Bobot jenis hambatan samping ditetapkan dari Tabel 2.6, dan kriteria KHS berdasarkan frekuensi kejadian ini ditetapkan sesuai dengan Tabel 2.7 dibawah.

Tabel 2.2 Pembobotan Hambatan Samping

No	Jenis hambatan samping utama	Bobot
1	Pejalan kaki di badan jalan dan yang menyeberang	0,5
2	Kendaraan umum dan kendaraan lainnya yang berhenti	1,0
3	Kendaraan keluar/masuk sisi atau lahan samping jalan	0,7
4	Arus kendaraan lambat (kendaraan tak bermotor)	0,4

(Sumber: PKJI, 2014)

Tabel 2.3 Kriteria Kelas Hambatan Samping

Kelas Hambatan Samping	Nilai frekuensi kejadian (dikedua sisi) dikali bobot	Ciri-ciri khusus
Sangant rendah,	< 100	Daerah Permukiman, tersedia
SR	< 100	jalan lingkungan (frontage road)

		Daerah Permukiman, ada
Rendah, R	100 - 299	beberapa angkutan umum
		(angkot).
Sedang, S	300 - 499	Daerah Industri, ada beberapa
Sedang, S	300 - 499	toko di sepanjang sisi jalan.
Tinggi T	500 - 899	Daerah Komersial, ada aktivitas
Tinggi, T	300 - 899	sisi jalan yang tinggi.
Sangat tinggi ST	> 900	Daerah Komersial, ada aktivitas
Sangat tinggi, ST	> 900	pasar sisi jalan.

(Sumber: PKJI, 2014)

2.4.8 Indeks Tingkat Pelayanan Jalan

Tingkat Pelayanan Jalan diklasigikasikan menjadi enam tingkatan, yaitu dari Tingkat Pelayanan A sampai Tingkat Pelayanan F yang dapat dilihat dari tabel dibawah:

Tabel 2.4 Tabel Tingkat Pelayanan Jalan

Tingkat Pelayanan	Kecepatan Rata-Rata	Indeks (Q/C)	Karakteristik lalu Lintas	
A	≥80	≤0,6	Kondisi arus bebas	
В	≥40	≤0,7	Kondisi arus stabil	
С	≥30	≤0,8	Kondisi arus stabil	
D	≥25	≤0,9	Kondisi arus tidak stabil	
Е	±25	≤1,00	Kondisi arus tidak stabil dan terhambat	
F	<15	≥1,00	Kondisi arus tertahan, macet	

Sumber: Peraturan Mentri Perhubungan Tahun 2006

2.6 Software PTV Vissim

PTV Vissim adalah sebuah program pemodelan transportasi untuk menganalisis kondisi lalu lintas eksidting, forecasting yang mendukung data GIS (MSST UGM, 2016). Vissim juga merupakan software yang dapat melakukan simulasi pada lalu lintas multi-modal mikroskopik, transportasi umum, dan pejalan kaki yang dikembangkan oleh PTV Planung Transport Verkehr AG di Karlsruhe, Jerman.

Vissim juga termasuk alat canggih yang didalamnya dapat mensimulasikan aliran lalu lintas multi-moda, yaitu: mobil, angkutan barang, bus, dan sepeda motor serta pejalan kaki. Berikut kelebihan dan kekurangan dari *software* PTV Vissim:

1. Kelebihan dari software PTV Vissim:

- Dapat memgevaluasi berbagai langkah alternatif yang termasuk langkah-langkah rekayasa transportasi dan perencanaan efektivitas.
- Mempunyai fasilitas simulasi untuk transportsi multimoda.
- Mempunyai *output* 3D *animations* yang meliputi penggambaran mengenai situasi lingkungan di sekitar jalan dan gedung.
- Data *collections* yang bersifat fleksibel dan efektif.

2. Kekurangan dari software PTV Vissim:

- Sulit digunakan karena kekompleksan itu sendiri, pemodelan memerlukan coding yang signifikan.
- Kurang *improvement* karena masih ada *error message* dalam bahasa Jerman.

2.7 Studi Terdahulu

Tabel 2.5 Studi terdahulu

No	Nama Penulis dan Tahun	Judul	Hasil	Perbedaan
1	Theresia	Pengaruh	Dalam menganalisa	1. Menggunak
	Kezia	Hambatan	kinerja ruas jalan	anmetode
	Senduk	Samping	dengan	MKJI 1997.
	Audie L. E.	Terhadap	menggunakan	2. Panjang ruas
	Rumayar,	Kinerja Ruas	Manual kapasitas	jalan 300
	Steve Ch. N.	Jalan Raya	Jalan Indonesia	meter.
	Palenewen,	Kota Tomohon	(MKJI 1997)	3. dilakukan 3
	tahun 2018		diperoleh kapasitas	hari mewakili
			2320,812 smp/jam	weekday dan
			dengan derajat	1hari

			kejenuhan (DS)	mewakili
			sebesar 0,4279 untuk	weekend.
			Persimpangan Jl.	
			Pesanggrahan –	
			Persimpangan Jl.	
			Pasuwengan dengan	
			tingkat pelayanan	
			jalan B, dan (DS)	
			sebesar 0,4610 untuk	
			Persimpangan Jl.	
			Pasuwengan -	
			Persimpangan Jl.	
			Pesanggrahan	
			dengan tingkat	
			pelayanan C.	
2	Rikson	Ananlisis	Volume rata-rata	1. Menggunak
	Nduru, Yosi	Pengaruh	tertinggi yaitu arah	anmetode
	Alwinda,	Hambatan	timur berkisar 1866-	MKJI 1997.
	Mardani	Samping	2074 smp/jam dan	2. Panjang ruas
	Sebayang,	Terhadap	arah barat berkisar	jalan 200
	tahun 2020	Kinerja	1882-2016 smp/jam.	meter.
		RuasJalan	Tingkat pelayanan A	
		Perkortaan	yaitu arus bebas,	
			volume rendah,	
			kecepatan tinggi.	
3	Janity Arsyi,	Analisis	Kinerja ruas jalan	1. Menggunak
	Rudi S	Pengaruh	Tanjung Raya 2	anmetode
	Suyono,	Ativitas	Desa Kapur saat	MKJI 1997.
	Nurlaily	Hambatan	beraktifitasnya	2. Pengambila
	Kadarini,	Samping	hambatan samping	n data
	tahun 2018	terhadap	memiliki derajat	dilakukan3
		Kinerja Ruas	kejenuhan pada	hari yaitu:

		Jalan Desa	segmen 1 yaitu	senin, sabtu,
		Kapur	0,39/LOS A (tahun	minggu.
			2018) meningkat	
			menjadi 0,9/LOS E	
			(tahun 2023). Pada	
			segmen 2 yaitu	
			0,09/LOS A (tahun	
			2018) meningkat	
			menjadi 0,35/LOS A	
			(tahun 2023).	
4	Ir. H.	Pengaruh	Besarnya pengaruh	1. Menggunakan
	Benny	Hambatan	hambatan samping	metode MKJI
	Mochtar,	Samping	terhadap kinerja ruas	1997.
	E.A., MT,	Terhadap	jalan Lambung	
	Sahrull	Kinerja Ruas	Mangkurat di Pasar	
	ah,ST.,	Jalan Lambung	Rahmat dapat dilihat	
	MT	Mangkurat Di	pada nilai R square	
	tahun 2015	Pasar Rahmat	(angka korelasi yang	
		Kota	dikuadratkan)	
		Samarinda	sebesar 0,245 atau	
			sama dengan 25%,	
			ini berarti besarnya	
			pengaruh hambatan	
			samping adalah	
			25%.	
5	Faried	Analisis	Berdasarkan Analisa	1. Menggunak
	Desembardi,	Kinerja	jalan perkotaan	anmetode
	Agus	RuasJalan	menggunakan MKJI	MKJI 1997.
	Sukrisman,	Terhadap	1997 pengaruh	2. Pengambila
	Harfli	Pengaruh	hambatan samping	n data
	Ulayanto,	Hambatan	pada jalan Sangaji	dilakukan
	Hendrik	Samping	Gonof tergolong	selama 6

	Pristianto	Pada Jalan	sedang/medium	hari (senin-
	tahun 2016	A.M. Sangaji	karena faktor	sabtu).
		Gonof KM.12	penyesuaian sebesar	3. Panjang
		Kota Sorong	0,95 sehingga	ruas jalan
			didapat kapasitas	200 meter.
			1654 smp/jam	
			dengan nilai derajat	
			kejenuhan 0,46.	
6	Gallant	Pengaruh	Dalam menganailis	1. Menggunakan
	Sondakh	Hambatan	kinerja ruas jalan	metode MKJI 1997
	Marunsenge	Samping	dengan	2. Tipe jalan 2/1
	James A.	Terhadap	menggunakan	UD 3. Panjang ruas
	Timboeleng,	Kinerja Pada	metode MKJI 1997	jalan 250 meter
	Lintong	Ruas Jalan	ditinjau dari	
	Elisabeth	Panjaitan	kapasitas dan derajat	
	tahun 2015	(Kelenteng	kejenuhan pada	
		Ban Hing	kondisi existing	
		Kiong)	terhadap beberapa	
		Dengan	scenario (dengan	
		menggunakan	menghilangkan salah	
		Metode MKJI	satu hambatan	
		1997	samping) diperoleh	
			kapasitas ruas jalan	
			Panjaitan adalah	
			133,06 smp/jam,	
			dengan derajat	
			kejenuhan (DS)	
			sebesar 0,986.	
7	L. Ahmad	Pengaruh	Tingkat pelayanan	1. Pengambila
	Febrian	Hambatan	jalan tergolong "C",	n data
	Sakraji,	Samping	volume lalu lintas	dilakukan
	Ani Tjitra	Terhadap	terdapat 9408	selama 3

	Handayani	Kinerja	kendaraan/jam dan	hari.
	, Veronica	RuasJalan	4069,6 skr/jam	2. Panjang
	Diana	(Studi	dengan derajat	jalan500
	Anggorow	Kasus Jalan	kejenuhan 0,68.	meter.
	atitahun	Laksda		
	2020	Adisutjipto		
		Km 6,3 – 6,8		
8	Anugerah	Evaluasi	Kapasitas jalan pada	1. Menggunak
	Fajriawan	Kinerja Jalan	ruas jalan adalah	anmetode
	Santoso,	Akibat	2181,89 smp/jam	MKJI 1997.
	Theresia	Hambatan	dengan volume lalu	2. Panjang
	Maria	Samping Di	lintas maksimum	ruas jalan
	Candra	Jalan Raya	sebesar 1638,60	200 meter.
	Agusdini	Tanah Merah	smp/jam. Kenerja	
	tahun 2019	Bangkalan	ruas jalan	
			berdasarkan hasil	
			analisis arus dibagi	
			kapasitas (Q/C ratio)	
			berada pada	
			golongan D dengan	
			nilai sebesar 0,75.	
9	Indrian	Analisis	Kondisi arus	1. Menggunak
	Citra, Rais	Pengaruh	lalulintas di ruas	anmetode
	Rachman,	Hambatan	jalan Veteran	MKJI 1997.
	Monika D.M	Samping	Selatan cukup tinggi	2. Tipe
	Palinggi	Tehadap	dijam-jam tertentu	jalan
	tahun 2020	Kinerja Ruas	dan pada penelitian	4/1D.
		Jalan Veteran	yang dilakukan	3. Panjang ruas
		Selatan	selama 3 hari yaitu	jalan 200
			senin, rabu, dan	meter.
			sabtu arus puncak	4. Pengambilan
			terjadi pada pagi hari	data

			mulai pukul 07.00 –	dilakukan
			08.00 dikarenakan	selama 3 hari
			tingginya aktivitas	yaitu: senin,
			masyarakat di ruas	rabu, sabtu.
			jalan Veteran	
			Selatan pada jam	
			tersebut.	
10	Fauzan Sufil	Analisa	Hasil pertungan	1. Panjang
	Ichwan	Pengaruh	dengan	ruasjalan
	Putra tahun	Parkir Badan	menggunakan	2,3 Km.
	2020	Jalan	PKJI 2014,	2. Lebih
		Terhadap	volume lalu lintas	dikhususka
		Kinerja Lalu	dengan intensitas	n analisis
		Lintas	tingi terdapat pada	parkirpada
		Menggunaka	hari Minggu 21	badan
		nMetode	Juni 2020	jalan.
		PKJI	dengan jumlah 3662 skr/jam, hambatan	
			samping pada ruas	
			jalan tersebut	
			>900 artinya	
			sangat tinggi (ST).	
			Kapasitas (C)	
			Kapasitas (C) pada ruas jala	
			pada ruas jala	