BAB V

PENUTUP

4.1. Kesimpulan

Berdasarkan hasil perancangan perangkat keras dan perangkat lunak, pengujian kenaikan suhu, pengambilan data perubahan suhu pada setiap bukaan, dan pengujian kontrol logika *fuzzy* pada penelitian Alat Pengering Biji Kopi Dengan Kontrol Suhu Berbasis Logika *Fuzzy*, dapat disimpulkan bahwa:

- Perancangan perangkat keras pada alat pengering biji kopi berhasil mengontrol suhu dengan efektif.
- 2. Perancangan perangkat lunak pada alat pengering biji kopi berhasil mendapatkan nilai suhu, mengontrol katup dan memproses data.
- 3. Perancangan kontrol logika *fuzzy* berhasil mengontrol suhu dengan stabil.
- 4. Semakin besar bukaan katup maka penurunan suhu akan semakin cepat dan sebaliknya.
- 5. Semakin sedikit atau semakin banyak jumlah variasi bukaan tidak menentukan kecepatan mencapai setpoint.
- 6. Variasi derajat bukaan katup mempengaruhi kecepatan dan kestabilan suhu menuju setpoint.
- 7. Semakin sedikit anggota himpunan fuzzy, semakin cepat mencapai setpoint, namun semakin tidak stabil.
- 8. Semakin banyak jumlah anggota himpunan fuzzy, semakin lama mencapai setpoint.

- Kestabilan tercepat dan terstabil didapat dengan kontrol logika fuzzy dengan 5 anggota dengan waktu 16 menit 26 detik dan luas error setelah mencapai setpoint sebesar 48,98.
- 10. Kecepatan mencapai setpoint tercepat didapat dengan kontrol logika fuzzy dengan 4 anggota dengan waktu 15 menit 22 detik dan luas error setelah mencapai setpoint 168,04.

4.2. Saran

Penelitian ini masih terdapat beberapa kekurangan yang dapat mempengaruhi kehandalan sistem untuk mencapai setpoint, penulis mengusulkan untuk pengembangan selanjutnya sebagai berikut:

- Mengukur pemerataan suhu didalam kotak pengering dengan menyimpan beberapa sensor didalam kotak pengering.
- 2. Memperhitungkan suhu lingkungan kedalam kontrol logika fuzzy.
- 3. Memantau dan/atau mengontrol kelembaban kotak agar proses pengeringan menjadi lebih cepat.
- 4. Melakukan pengukuran laju pengeringan biji kopi.