BAB II

STUDI LITERATUR

2.1 Simpang

Persimpangan adalah daerah atau tempat dimana dua atau lebih jalan raya bertemu atau berpotongan, termasuk fasilitas jalan dan sisi jalan untuk pergerakan lalu lintas pada daerah tersebut. Fungsi dari persimpangan adalah untuk perpindahan atau perubahan arah perjalanan. Simpang adalah bagian yang tidak bisa di pisahkan dalam jaringan jalan yang merupakan tempat dimana titik konflik dan tempat kemacetan karena bertemunya dua ruas jalan atau lebih. Karena simpang adalah tempat terjadinya konflik, maka dari itu perlu dilakukan pemodelan dan pengaturan pada daerah simpang untuk menghindari atau meminimalisir terjadinya suatu konflik dan

2.2 Jenis Persimpangan

Terdapat dua tipe persimpangan, yaitu Simpang sebidang dan Simpang tidak sebidang.

A. Simpang Sebidang

Simpang sebidang adalah simpang dimana pertemuan dua ruas jalan atau lebih secara sebidang tidak saling bersusun tujuan nya adalah untuk mengalirkan atau melewatkan lalu lintas dengan lancar

2-1

Gambar 2.1 Persimpangan Sebidang

(Sumber : M. Donie Aulia, dkk 2018)

B. Simpang Tidak Sebidang

Simpang tidak sebidang adalah simpang dimana pertemuan dua ruas jalan atau lebih saling bertemu tidak dalam satu bidang tetapi salah satu ruas jalan berada diatas atau dibawah ruas jalan yang lain

Gambar 2.2 Persimpangan Tidak Sebidang (Sumber : M. Donie Aulia, dkk 2018)

Menurut Morlok (1988), jenis simpang berdasarkan cara pengaturan nya dapat di kelompok-kan menjadi dua jenis, yaitu :

- A. Simpang Jalan Bersinyal, yaitu pemakai jalan dapat melewati simpang sesuai dengan pengoprasian sinyal lalu lintas. Jadi pemakai jalan hanya boleh lewat saat sinyal lalu lintas menunjukkan warna hijau pada lengan simpang nya.
- B. Simpang Jalan Tidak Bersinyal, yaitu simpang yang tidak menggunakan sinyal lalu lintas. Pada simpang tidak bersinyal ini pemakai jalan harus memutuskan apakah cukup aman untuk melewati simpang atau harus berhenti dahulu sebelum melewati simpang tersebut, simpang ini biasanya menimbulkan antrian panjang antar kendaraan karena kebanyakan tidak adanya kendaraan yang mau mengalah

2.3 Titik Konflik Pada Persimpangan

Keberadaan persimpangan pada suatu jaringan jalan, ditunjukan agar kendaraan bermotor, pejalan kaki (pedestrian), dan kendaraan tidak bermotor dapat bergerak dalam arah yang berbeda dan pada waktu yang bersamaan. Dengan demikian pada persimpangan akan terjadi suatu keadaan yang menjadi karakteristik yang unik dari persimpangan yaitu munculnya konflik yang berulang sebagai akibat dari pergerakan (manuver) tersebut.

Berdasarkan sifatnya, konflik yang ditimbulkan oleh manuver kendaraan dan keberadaan pedestrian dibedakan menjadi 2 tipe, yaitu :

a. Konflik primer, yaitu konflik yang terjadi antara arus lalu lintas yang memotong

b. Konflik sekunder, yaitu konflik yang terjadi antara arus lalu lintas kanan dengan arus lalu lintas arah lainnya dan atau lalu lintas belok kiri dengan para pejalan kaki. Berikut adalah gambar titik konflik yang terjadi disuatu persimpangan :

Gambar 2.3 Konflik Persimpangan

(Sumber : https://geotranspot.wordpress.com/2013/05/24/teori-persimpangan/)

Semakin banyak titik konflik akan semakin menghambat proses pergerakan arus lalu lintas dan kemungkinan akan menyebabkan terjadinya kecelakaan. Jumlah dan jenis konflik yang terjadi pada suatu persimpangan yaitu belok kiri, belok kanan dan lurus masing-masing akan menghasilkan titik konflik yang berbeda setelah bertemu dengan pergerakan arus lalu lintas lainnya yang berasal dari ketiga lengan persimpangan lainnya. Pada gambar 2.3 semua pergerakan arus lalu lintas dari setiap lengan persimpangan akan menghasilkan konflik yang besilang (*crossing*), konflik bergabung (*merging*) dan konflik memisah (*diverging*). Jumlah dan jenis konflik pada persimpangan bergantung pada :

- a. Jumlah di setiap lengan persimpangan
- b. Arah pergerakan arus lalu lintas dari setiap lengan persimpangan
- c. Pengaturan pergerakan arus lalu lintas

2.4 Kinerja Simpang Bersinyal

2.4.1 Permasalahan Simpang Bersinyal

Adapun permasalahan simpang bersinyal dalam PKJI 2014 adalah sebagai berikut :

1. Panjang antrian (Queue Length)

Panjang antian adalah suatu panjang antrian kendaraan pada suatu pendekat

2. Antrian (Queue)

Antrian adalah jumlah kendaraan yang antri dalam suatu pendekat

3. Fase (Phase Stage)

Fase adalah bagian dari siklus sinyal dengan lampu hijau disediakan bagi kombinasi tertentu dari Gerakan lalu lintas

4. Tundaan (Delay)

Tundaan adalah waktu tempuh tambahan untuk melewati simpang bila dibandingkan dengan situasi tanpa simpang

5. Derajat Kejenuhan (Degree of saturation)

Derajat kejenuhan adalah rasio dari arus lalu lintas terhadap kapasitas untuk suatu pendekat

2.5 Teori Perhitungan PKJI 2014

2.5.1 Data Masukan

1. Kondisi Lingkungan dan Geometrik Jalan

Berisi tentang gambar simpang empat lengan yang terdiri dari lebar jalur, lebar bahu, median, hambatan samping dan jumlah penduduk di tempat diadakan nya pengamatan

2. Kondisi Arus Lalu lintas

Menurut PKJI 2014, kendaraan dikategorikan beberapa tipe seperti tabel 2.1

No	Jenis Kendaraan	Definisi
1	Kendaraan Ringan (KR) / Light Vehicle (LV)	Sedan, Angkot, pick-up
		dan truck kecil
2	Kendaraan Sedang (KS) / Heavy Vehicle (HV)	Bus, Truck
3	Sepeda Motor (SM) / Motor Cycle (MC)	Sepeda Motor
4	Kendaraan tak Bermotor (KTB) / Unmotorised	Becak, Sepeda
	(UM)	

Tabel 2.1 Jenis Kendaraan

(Sumber : PKJI 2014)

Tabel 2.2 Konversi Kendaraan

Jonis Kondarson	skr tiap tipe kendaraan		
Jenis Kendaraan	Terlindung	Terlawan	
Kendaraan Ringan (KR)	1,0	1,0	
Kendaraan Sedang (KS)	1,8	1,3	
Sepeda Motor	0,2	0,4	

(Sumber : PKJI 2014)

2.5.2 Kapasitas Jalan

Persamaan dasar untuk menghitung kapasitas simpang bersinyal untuk tiap lengan dalam PKJI 2014 adalah sebagai berikut :

$$C = S x \frac{H}{c}$$
(2.5.2)

Dimana

C : Kapasitas simpang bersinyal (skr/jam)

S : Arus jenuh (skr/jam)

:

H : Total waktu hijau dalam satu siklus (detik)

c : Waktu siklus (detik)

2.5.3 Analisis Arus Jenuh (S)

Arus jenuh (S) adalah hasil kali antara arus jenuh dasar (So) dengan beberapa faktor penyesuaian untuk penyimpangan kondisi eksiting terhadap kondisi ideal. Arus jenuh dasar (So) adalah kondisi lalu lintas dan geometrik yang ideal. Berikut adalah rumus untuk menghitung arus jenuh :

$$S = S_O X F_{HS} X F_{UK} X F_G X F_P X F_{BKi} X F_{Bka}$$
(2.5.3)

Dimana :

So : Arus jenuh dasar (skr/jam)

F_{HS} : Faktor penyesuaian akibat hambatan samping lingkungan jalan

F_{UK} : Faktor penyesuaian ukuran kota

F_G : Faktor penyesuaian akibat kelandaian memanjang pendekat

F_P : Faktor penyesuaian akibat adanya jarak garis henti pada mulut pendekat terhadap kendaraan yang parkir pertama

- FBKI : Faktor penyesuaian arus lalu lintas belok kiri
- FBKa : Faktor penyesuaian akibat arus lalu lintas belok kanan

Untuk pendekat terlindung So ditentukan oleh persamaan berikut :

$$So = 600 X L_E$$
 (2.5.3.a)

Dimana :

 $L_E = Lebar efektif pendekat (m)$

Perhitungan analisis arus jenuh mengacu pada gambar di bawah ini :

► Faktor Penyesuaian Ukuran Kota (F_{UK})

Ukuran Kota (Juta Penduduk)	Faktor Penyesuaian untuk ukuran kota
< 0,1	0,82
0,1 - 0,5	0,83
0,5 - 1,0	0,94
1,0 - 3,0	1,00
> 3,0	1,05

Tabel 2.3 Faktor I	Penyesuaian	Ukuran	Kota
--------------------	-------------	--------	------

(Sumber : PKJI 2014)

➢ Faktor penyesuaian hambatan samping (F_{HS})

Tabel 2.4 Faktor Penyesuaian Hambatan Samping

Lingkungan	Hambatan Samping	Tine Feee	Rasio Kendaraan Tak Bermotor					
Jalan		Tipe Fase	0,00	0,05	0,10	0,15	0,20	>0,25
	Tinggi	Terlawan	0,93	0,88	0,84	0,79	0,74	0,70
	THING	Terlindung	0,93	0,91	0,88	0,87	0,85	0,81
Komersial	Sodang	Terlawan	0,94	0,89	0,85	0,80	0,75	0,71
(KOM)	Seuding	Terlindung	0,94	0,92	0,89	0,88	0,86	0,82
	Rendah	Terlawan	0,95	0,90	0,86	0,81	0,76	0,72
		Terlindung	0,95	0,93	0,90	0,89	0,87	0,83
	Tinggi	Terlawan	0,96	0,91	0,86	0,81	0,78	0,72
		Terlindung	0,96	0,94	0,92	0,99	0,86	0,84
Pemukiman	Sedang	Terlawan	0,97	0,92	0,87	0,82	0,79	0,73
(KIM)		Terlindung	0,97	0,95	0,93	0,90	0,87	0,85
	Rendah	Terlawan	0,98	0,93	0,88	0,83	0,80	0,74
		Terlindung	0,98	0,96	0,94	0,91	0,88	0,86
Akses	Tinggi/Sodang/Bondah	Terlawan	1,00	0,95	0,90	0,85	0,80	0,75
Terbatas	linggi/Sedang/Kendah	Terlindung	1,00	0,98	0,95	0,93	0,90	0,88

(Sumber : PKJI 2014)

Faktor Penyesuaian Kelandaian

Gambar 2.4 Grafik Faktor Penyesuaian Kelandaian

➢ Faktor Penyusuaian Parkir (F_P)

Faktor penyesuaian akibat kendaraan parkir adalah sebagai fungsi jarak dari garis henti sampai ke kendaraan yang parkir pertama kali pada jalur pendekat. Nilai F_P dapat dihitung menggunakan rumus berikut :

$$F_{\rm P} = \frac{(\frac{Lp}{3} - \frac{L}{2}) X(\frac{\frac{Lp}{3} - g}{L})}{H}$$
(2.5.3.b)

Jika tanpa parkit FP = 1

Dimana :

Lp : Jarak antara garis henti ke kendaraan yang parkir pertama pada lajur belok kiri (m)

L : Lebar pendekat (m)

H : Waktu hijau pada pendekat yang ditinjau (detik)

Faktor Penyesuaian Belok Kanan

Faktor penyesuaian belok kanan (F_{Bka}) adalah fungsi dari rasio kendaraan belok kanan. Nilai F_{Bka} dapat ditentukan dengan rumus berikut :

$$F_{Bka} = 1,0 + R_{Bka} X 0,26 \qquad (2.5.3.c)$$

Dimana :

Gambar 2.5 Grafik Faktor Penyesuaian Belok Kanan

Faktor Penyesuaian Belok Kiri

Faktor penyesuaian belok kiri (F_{Bki}) adalah fungsi dari rasio belok kiri yang didapatkan menggunakan rumus berikut :

$$F_{Bki} = 1,0 - R_{Bki} X 0,16 \qquad (2.5.3.d)$$

Dimana :

R_{Bki} : Rasio belok kiri

2.5.4 Rasio Arus Jenuh

Dalam menghitung rasio arus jenuh perlu di perhatikan bahwa :

- a. Jika arus belok kiri jalan terus (B_{KiJT}) harus dipisahkan dari analisis, maka hanya arus lurus dan belok kanan saja yang dihitung sebagai nilai Q
- b. Jika $L_E = L_K$, maka hanya arus lurus saja yang masuk dalam nilai Q.
- c. Jika pendekat memiliki dua fase, yaitu fase untuk arus terlawan (O) dan fase terlindung (P), maka arus gabungan dihitung menggunakan rumus berikut :

$$R_{Q/S} = \frac{Q}{S} \tag{2.5.4}$$

Dimana :

- Q : Arus lalu lintas
- S : Arus jenuh

Dan untuk arus kritis dihitung dengan rumus berikut :

$$RF = \frac{RQ/Skritis}{RAS}$$
(2.5.4.a)

Dimana :

RAS : Jumlah dari nilai nilai R_{Q/S kritis}

R_{Q/S kritis} : Rasio arus tertinggi dari masing-masing fase

2.5.5 Waktu Siklus Dan Waktu Hijau

A. Waktu siklus

Tahap pertama adalah penentuan waktu siklus untuk sistem kendali waktu tetap yang dapat dilakukan menggunakan rumus di bawah ini. Rumus ini bertujuan untuk meminimumkan tundaan total.

$$Ct = \frac{(1.5 x Hh+5)}{1 - \sum RQ/Skritis}$$
(2.5.5)

Dimana :

Ct	: Waktu siklus (det)
H_{H}	: Jumlah waktu hijau hilang per seiklus (det)
R _{Q/S}	: Rasio arus
R _{Q/Skritis}	: Nilai R _{Q/S} yang tertinggi dari semua pendekat
$\Sigma R_{Q/Skritis}$: Rasio arus simpang (sama dengan jumlah R _{Q/Skritis} dari semua fase)
	pada siklus tersebut

Waktu siklus yang akah dihasilkan diharapkan sesuai dengan batas yang disarankan

oleh PKJI 2014 yang tertera pada tabel dibawah ini :

Tipe Pengaturan	Waktu siklus yang layak (det)
Pengaturan dua-fase	40-80
Pengaturan tiga-fase	50-100
Pengaturan empat-fase	80-130

Tabel 2.5 Waktu Siklus Layak

(Sumber: PKJI 2014)

B. Waktu Hijau

Nilai waktu hijau (Hi) dihitung menggunakan rumus berikut :

$$Hi = (ct - HH) X \frac{RQ/Skritis}{(\sum iRQ/Skritis)i}$$
(2.5.5.a)

Dimana :

Hi : Waktu hijau pada fase i (det)

i : indeks untuk fase ke i

2.5.6 Derajat Kejenuhan (DJ)

Derajat Kejenuhan adalah perbandingan antara rasio volume arus lalu lintas (Q) terhadap kapasitas (C). Berikut adalah rumus untuk menghitung derajat kejenuhan :

$$DS = Q/C \tag{2.5.6}$$

Dimana

Q : Rasio Volume arus lalu lintas (skr/jam)

C : Kapasitas (skr/jam)

:

2.5.7 Panjang Antrian (PA)

Panjang antran adalah banyaknya kendaraan yang berada pada simpang di setiap jalur saat nyala lampu merah atau adalah jumlah antrian yang tersisa dari fase hijau sebelumnya. Berikut adalah rumus untuk menghitung panjang antrian :

Untuk derajat kejenuhan (DJ) > 0,5

NQ₁ = 0,25 x C x [(
$$DJ - 1^2$$
) + $\sqrt{(DJ - 1^2) + (\frac{8 X DS - 0.5}{c})}$] (2.5.7)

Dimana :

NQ1 : Jumlah smp yang tertinggal dari fase hijau sebelumnya

C : Kapasitas (skr/jam)

DJ : Derajat Kejenuhan

Untuk DS < 0,5

$$NQ_1 = 0$$
 (2.5.7.a)

Jumlah antrian kendaraan dihitung, lalu dihitung jumlah antrian satuan mobil penumpang yang datang selama fase merah (NQ₂) dengan rumus berikut :

Untuk DS > 0.5; Selain dari itu $NQ_1 = 0$ adalah :

$$NQ_2 = \operatorname{ct} x \, \frac{1 - RH}{1 - RH \, x \, DJ} \, x \, \frac{Q}{3600} \tag{2.5.7.b}$$

Dimana :

 NQ_2 : Jumlah antrian smp yang datang selama fase merah

DJ : Derajat Kejenuhan

- Q : Rasio Volume lalu lintas (skr/jam)
- Ct : Waktu Siklus (detik)
- R_H : Rasio Hijau (g/c)

Jumlah kendaraan antri menjadi :

$$NQ = NQ_1 + NQ_2 \qquad (2.5.7.c)$$

Dimana :

NQ : Jumlah rata-rata antrian smp pada awal sinyal hijau

NQ1 : Jumlah smp yang tertinggal dari fase hijau sebelumnya

NQ₂ : Jumlah antrian smp yang datang selama fase merah

Panjang antrian (PA) diperoleh dari perkalian (NQ) dengan luas rata-rata yang dipergunakan oleh satu kendaraan ringan (ekr) yaitu 20 m2 dibagi lebar masuk (m) dan pembagian dengan lebar masuk

$$PA = NQ X \frac{20}{LM}$$
(2.5.7.d)

Dimana :

L_M : Lebar masuk (m)

2.5.8 Kendaraan Terhenti (NS)

Angka henti (NS) masing-masing pendekat yang didefinisikan sebagai jumlah ratarata kendaraan berhenti per smpp, ini termasuk henti berulang sebelum melewati garis stop simpang. Berikut adalah rumus untuk menghitung kendaraan terhenti (NS)

$$R_{\rm KH} = 0.9 \ \mathrm{x} \, \frac{NQ}{Q \ x \ ct} \, \mathrm{x} \ 3600 \tag{2.5.8}$$

Dimana

Q : Volume rasio arus lalu lintas (skr/jam)

ct : Waktu Siklus (det)

Kendaraan terhenti dapat dihitung dengan rumus :

$$N_{\rm H} = Q \times R_{\rm KH} \tag{2.5.8.a}$$

Dimana :

Q : Volume arus lalu lintas

R_{KH} : Angka henti rata-rata

2.5.9 Tundaan

Tundaan adalah rata-rata waktu tunggu tip kendaraan yang masuk dalam pendekat. Tundaan pada simpang terdiri dari 2 komponen, yaitu tundaan lalu lintas (T_L) dan tundaan geometrik (T_G). Tundaan lalu lintas (T_L) adalah akibat interaksi antar lalu lintas pada simpang dengan faktor luar seperti kemacetan pada pintu keluar dan pengaturan manual oleh polisi. Berikut adalah rumus untuk perhitungan Tundaan/Delay (D)

$$T_L = c \ x \ \frac{0.5 \ x \ (1-RH)^2}{(1-RH \ x \ DJ)} \ x \ \frac{NQ1 \ x \ 3600}{C} \tag{2.5.9}$$

Dimana :

R_H : Rasio Hijau

DJ : Derajat Kejenuhan

C : Kapasitas (skr/jam)

NQ : Jumlah smp yang tersisa dari fase hijau sebelumnya

Tundaan Geometrik (T_G) adalah tundaan akibat perlambatan atau percepatan pada simpang atau akibat terhenti karena lampu merah

$$T_{G} = (1 - R_{KH}) \times P_{B} \times 6 + (R_{KH} \times 4)$$
 (2.5.9.a)

Dimana :

PB : Porsi kendaraan membelok pada suatu pendekat

Untuk rata-rata tiap pendekat, dengan rumus :

$$T = T_L + T_G \tag{2.5.9.b}$$

Dimana :

T_L : Tundaan lalu lintas rata-rata pendekat (det/skr)

T_G : Tundaan Geometri rata-rata pendekat (det/skr)

Tundaan total
$$=$$
 T X Q (2.5.9.c)

2.5.9.1 Level Of Service (LOS)

Level of service adalah gambaran kondisi arus lalu lintas dan pengendara dari berbagai faktor yang mencakup kecepatan kendaraan, waktu perjalanan, kenyamanan, kebebasan bergerak, kenyamanan dan keselamatan, sehingga LOS digunakan sebagai tolak ukur kualitas suatu kondisi lalu lintas. Dalam klasifikasi pelayanan nya LOS dibagi menjadi 6 tingkatan yaitu :

- 1. Tingkat Pelayanan A
 - a. Arus lalu lintas yang bebas tanpa hambatan
 - b. Volume dan kepadatan lalu lintas rendah
 - c. Kecepatan kendaraan ditentukan oleh pengemudi

- 2. Tingkat Pelayanan B
 - a. Arus lalu lintas stabil
 - b. Kecepatan mulai dipengaruhi oleh keadaan lalu lintas
- 3. Tingkat Pelayanan C
 - a. Arus lalu lintas masih stabil
 - Kecepatan perjalanan dan kebebasan bergerak mulai di pengaruhi oleh besarnya volume lalu lintas
- 4. Tingkat Pelayanan D
 - a. Arus lalu lintas mulai tidak stabil
 - b. Perubahan volume lalu lintas sangat mempengaruhi besarnya kecepatan perjalanan
- 5. Tingkat Pelayanan E
 - a. Arus lalu lintas sudah tidak stabil
 - b. Volume kendaraan sama dengan kapasitas
 - c. Sering terjadi kemacetan
- 6. Tingkat Pelayanan F
 - a. Arus lalu lintas tidak stabil
 - b. Sering terjadi kemacetan
 - c. Arus lalu lintas rendah

Tingkat tundaan dapat digunakan sebagai indikator tingkat pelayanan atau level of service baik untuk setiap pendekat atau seluruh persimpangan. Berikut adalah kaitan antara level of service dengan lamanya durasi tundaan :

Level Of Service	Tundaan (det/skr)	Keterangan
	~	
Α	<5	Baik Sekali
В	5,1-15	Baik
С	15,1-25	Sedang
D	25,1-40	Kurang
E	40,1-60	Buruk
F	60	Buruk Sekali

Tabel Indikator Level Of Service

2.6 Aplikasi Vissim 9.0

Vissim merupakan perangkan lunak untuk mensimulasikan lalu lintas, merekayasa lalu lintas, perencanaan transportasi, waktu sinyal, angkutan umun, serta perencanaan kota yang bersifat mikroskopik yang berarti tiap karakteristik kendaraan akan disimulasikan secara individual. Vissim merupakan perangkat lunak yang dinamis sebelum membuat perencanaan dalam bentuk nyata, Vissim juga mampu menampilkan simulasi dengan berbagai jenis dan karakteristik dari kendaraan seperti vehicle (mobil, truk, bus), public transport (tram, bus), cycles (sepeda, motor), mampu menampilkan sebuah animasi dan memodelkan segala jenis perilaku pengguna jalan yang terjadi dalam sistem transportasi. Vissim dapat mensimulasikan kondisi operasional unik yang terdapat dalam system transportasi, pengguna juga dapat memasukkan data - data untuk dianalisis sesuai keinginan pengguna. (A. Munawar, M.Z Irawan, A.G. Fitrada 2019), Perhitungan – perhitungan yang beragam bisa diinput pada software vissim, seperti tundaan, panjang antrian, kecepatan, berhenti, dan waktu tempuh. Vissim memungkinkan untuk mensimulasikan pola lalu lintas secara tepat dan menampilkan semua pengguna jalan dapat berinteraksi dalam satu model. Di dalam vissim terdapat konsep tautan dan konektor yang memungkinkan pengguna untuk memodelkan geometrik, atribut untuk pengemudi dan karakteristik kendaraan. Selain itu, vissim memberikan integrasi tanpa batas dengan system lain untuk pengontrol sinyal, manajemen lalu lintas. (Yulianto dan Munawar, 2017)

2.6.1 Bagian-Bagian Vissim

Menu pada program vissim 9.0 dibagi menjadi bidang-bidang berikut:

🚯 PTV Vissim 9.00-05 S	tudent Version					_	o ×	
File Edit View Lists	Base Data Traf	ic Signal Control Simulation Evaluati	on Presentation Scripts Help					
0 6 8 . 5	A		· · ·					
Network Objects	Ψ×	Network Editor	-				ņ	×
Links	<u> </u>	Select layout 🔹 🎤 🊝	💽 🕐 🖻 🖞 🖑 🥰 🔛 Q 🗲 =	> 😃 🍌 🛪 📾 😥 🍣				
50 Desired Speed De	ecisi	© Chen StreetMan contributora				Columby C	-	k
Reduced Speed A	krea	o openance and band band	México			A start and a start and a		Ĺ,
Conflict Areas		1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	and the second second		Talayee Mail Miner	and - Indi	- Giw	
Priority Rules			22.5		fenad star staat for stall		Us	hant
😳 Stop Signs					Nigeria South Sudan XYEAE			
Signal Heads			Colombia	ALLA .	Saomaaliya Jiaqadi			Aala
Detectors					République de Kenya			
Vehicle Inputs					du Congo Tanzania			
Vehicle Routes			Pero Y	Breit	Angela			
P Parking Lots			Boliv		Magarebigue			
Public Transport :	Stop 🗌			Paraguay -	Namiba			
Public Transport I	.ine 📕				South Africa			
Nodes								
HI Data Collection P	oint							
🙆 Vehicle Travel Tin	nes		Argentina					
Queue Counters								
CID Sections			the second s					
Background Imag	les							
Pavement Markin	gs 🛛 🗸							
Network Obj Levels	Backgrounds							
Quick View	ф X							
ىكى				e				
					and the second		1000	
			1		and the second			
		5000 km	2					
Quick View Smart Ma	P							
9307687.9:-2873422.1		- System initializ	ed!					

Gambar 2.7 Tampilan Dekstop Vissim 9.0

(Sumber : Screenshoot Dekstop PTV Vissim 9.0)

Header : Menunjukkan judul program, versi dan nama file jaringan.

Menu Bar : Akses disediakan melalui klik mouse atau shortcut keyboard.

Tool Bar : Kontrol editor jaringan dan fungsi simulasi.

Status Bar : Menunjukkan petunjuk editing dan status simulasi.

Scroll Bar : Digunakan untuk bergulir horizontal dan vertical dari jaringan area

tampil

Menu pada program VISSIM 9.0

A. File

Tabel 2.6 Menu File pada Vissim 9.0

New	Untuk membuat program Vissim baru

Open	Membuka File Program
Open Layout	Baca di tata letak file *.lyx dan berlaku untuk
	elemen antarmuka program dan parameter grafis
	editor program
Open Default Layout	Baca di default file layout *.lyx dan berlaku untuk
	elemen antarmuka program dan parameter grafis
	editor program
Read Additionally	Buka File program selain program yang ada
Save	Untuk menyimpan program yang sedang di buka
Save As	Menyimpan Program ke jalur yang baru
Save Layout As	Simpan tata ketak saat elemen antarmuka
	program dan parameter grafis dari editor program
	ke file layout
Save Layout As	Simpan tata letak elemen antarmuka program dan
Default	parameter grafis dari editor program ke file layout
	default
Import	Impor data
Eksport	Mulai ekspor data ke PTV Visum
Open Working	Membuka Windows Explorer di direktori kerja
Directory	saat ini
Exit	Menutup atau mengakhiri program Vissim

B. Edit

Tabel 2.7 Menu Edit pada Vissim 9.0

Undo	Untuk	kembali	keperintah
	sebelumny	a	
Redo	Untuk	kembali	keperintah
	sesudahnya	a	

Rotate Network	Masukkan sudut sekitar jaringan yg	
	diputar	
Move Network	Memindahkan Jaringan	
User Preference	Pilih Bahasa antarmuka penggunaan Vissim Kembalikan pengaturan default Tentukan penyisipan objek jaringan di jaringan editor Tentukan jumlah fungsi terakhir dilakukan yg akan disimpan	

C. View

Tabel 2.8 Menu View pada Vissim 9.0

Open New Network Editor	Tambah baru jaringan editor sebagai	
	daerah lain	
Network Objects	Membuka jaringan toolbar objek	
Levels	Membuka toolbar tingkat	
Background	Membuka toolbar background	
Quick View	Membuka quick view	
Smart Map	Membuka smart map	
Messages	Membuka halaman, menunjukkan	
	pesan dan peringatan	
Simulation Time	Menampilkan waktu simulasi	
Quick Mode	Menyembunyikan dan menampilkan	
	kembali objek jaringan berikut :	
	Vehicles In Network	
	Pedestrians In Network	
	Semua jaringan lainnya yang akan	
	ditampilkan	
Simple Network Display	Menyembunyikan dan menampilkan	
	objek	

(Sumber : Marrisa Ulfa 2017)

Base Data	Daftar untuk mendefinisikan atau	
	mengedit Base Data	
Network	Daftar atribut objek jaringan dengan	
Intersection Control	jenis objek jaringan yang dipilih	
Private Transport Public Transport		
Pedestrians Traffic		
Graphics & Presentation	Daftar untuk mendefinisikan atau	
	jaringan editing objek dan data yang	
	digunakan untuk persiapan grafis	
	dan representasi yang realistis dari	
	jaringan serta menciptakan	
	presentasi dari simulasi	
Measurements	Daftar data dari evaluasi simulasi	
Results		

Tabel 2.9 Menu List pada Vissim 9.0

E. Base Data

Tabel 2.10 Menu Base Data pada Vissim 9.0

Network Setting	Pengaturan default untuk jaringan	
2D/3D Model Segment	Menentukan ruas untuk kendaraan	
2D/3D Models	Membuat model 2D dan 3D untuk	
	kendaraan dan pejalan kaki	
Functions	Percepatan dan perlambatan perilaku	
	kendaraan	
Distribution	Distribusi untuk kecepatan yang	
	diinginkan, kekuatan, berat kendaraan,	
	waktu, lokasi, model 2D/3D, dan warna	
Vehicle Types	Menggabungkan kendaraan dengan	
	karakteristik mengemudi teknis serupa	
	di jenis kendaraan	
Vehicle Classes	Menggabungkan jenis kendaraan	
Driving Behaviors	Perilaku Pengemudi	
Link Behaviors Types	Tipe link, perilaku untuk link dan	
	konektor	
Pendestrian Types	Menggabungkan pejalan kaki dengan	
	sifat yang mirip dalam jenis pejalan kaki	
Walking Behaviors	Parameter perilaku berjalan	
Area Behaviors Types	Perilaku daerah untuk jenis daerah,	
	tangga dan landau	
Display Types	Tampilan untuk link, konektor dan	
	elemen konstruksi dalam jaringan	
Levels	Level untuk bangunan bertingkat atau	
	struktur jembatan untuk link	
Time Intervals	Interval waktu	

F. Traffic

Vehicle Composition	Menentukan jenis kendaraan untuk	
	komposisi kendaraan	
Pendestrians compositions	Menentukan jenis pejalan kaki untuk	
	komposisi pejalan kaki	
Pendestrian OD Matrix	Menentukan permintaan pejalan	
	kaki atas dasar hubungan OD	
Dynamic Assigment	Mendefinisikan tugas parameter	

G. Signal Control

Tabel 2.12 Menu Signal Control pada Vissim 9.0

Signal Controllers	Membuka daftar signal controllers :	
	menetapkan atau mengedit SC	
Signal Controller Comunication	Membuka daftar SC Comunication	
Fixed Time Signal Controller	Menentukan waktu dalam jaringan	

(Sumber : Marrisa Ulfa 2017)

H. Simulation

Tabel 2.13 Menu Simulation pada Vissim 9.0

Parameter	Masukkan parameter simulasi	
Continous	Mulai menjalankan simulasi	
Single step	Memulai simulasi dalam mode sa langkah	
Stop	Berhenti menjalankan simulasi	

(Sumber : Marrisa Ulfa 2017)

I. Evaluation

Tabel 2.14 Menu Evaluation pada Vissim 9.0

Configuration	Result attribute : mengkonfigurasi	
	hasil tampilan atribut	
	Direct output : konfigurasi output ke	
	file atau dtabase	
Database configuration	Mengkonfigurasi koneksi database	
Measurement definition	Tampilkan dan mengkonfigurasi	
	daftar pengukuran yang di inginkan	
Windows	Mengkonfigurasi waktu sinyal,	
	catatan SC detector atau perubahan	
	sinyal pada window	
Result Lists	Menampilkan hasil atribut dalam	
	daftar hasil	

J. Persentation

Camera Position	Membuka daftar Cameera Position	
Storyboards	Membuka daftar	
	storyboards/Keyframes	
AVI Recording	Merekam simulasi 3D sebagai file	
	video dalam formal file *.avi	
3D Anti-Alising	Beralih 3D anti-aliasing	

(Sumber : Marrisa Ulfa 2017)

Online Help	Membuka online help	
FAQ online	Menampilkan PTV Vissim FAQ	
	dhalaman web dari PTV Group	
Service Pack Download	Menampilkan Vissim & Viswalk	
	Service Pack Download area pada	
	halaman web dari PTV Group	
Technical Support	Menunjukkan bentuk dukungan dari	
	Vissim Teknis Hotline pada halaman	
	web dari PTV group	
Examples	Membuka folder dengan data contoh	
	dan data untuk tujuan pelatihan	
Register COM Server	Mendaftarkan Vissim sebagai server	
	СОМ	
License	Membuka jendela License	
About	Membuka jendela about	

2.6.2 Jenis, Kelas, dan Kategori Kendaraan

Pada dasarnya jenis kendaraan di lapangan dengan yang disediakan di Vissim tidak jauh berbeda. Secara default, Vissim menyediakan enam kelas dan kategori kendaraan yaitu Car, HGV, Bus, Tram, Pedestrian dan Bike, dengan berbagai jenis model kendaraan yang dapat dipilih sesuai keinginan.

Tabel 2.17 Kategori Kendaraan

Ionis	Dimensi kendaraan	
Kendaraan	Panjang	Lebar
Rendardan	(m)	(m)
Small City Car	3.9	1.695
Big City Car	4.455	1.735
Sedan	4.41	1.7
MPV	4.19	1.66
SUV	4.405	1.695
Mini Bus	4.17	1.695
Pick Up	4.17	1.7
Small Bus	6.98	2.035

(Sumber: www.semisena.com)

2.6.3 Parameter Kalibrasi Vissim

Pada perangkat lunak Vissim terdapat 168 parameter yang tertanam dalam perangkat lunak Vissim dalam berdasarkan parameter tersebut dipilih beberapa parameter yang sesuai dengan kondisi lalu lintas heterogen yang ada di Indonesia untuk menghasilkan model yang sesuai dengan kondisi yang dilapangan, parameter yang dipilih pada permodelan anatara lain (Marissa Ulfah, 2017) :

- A. Standstill Distance in Front of Obstacle yaitu parameter jarak aman ketika kendaraan akan berhenti akibat kendaraan yang berhenti atau melakukan perlambatan akibat hambatan dengan satuan meter (m).
- B. Observed Vehicle In Front yaitu parameter jumlah kendaraan yang diamati oleh pengemudi ketika ingin melakukan pergerakan atau reaksi .Nilai default parameter ini adalah satu, dua, tiga, dan empat dengan satuan unit kendaraan.
- C. Minimum Headway yaitu jarak minimum yang tersedia bagi kendaraan yang didepan untuk melakukan perpindahan lajur atau menyiap. Nilai default berkisar sampai 0.5 3 detik.
- D. Additive Factor Security yaitu nilai tambahan untuk sebagai parameter jarak aman kendaraan yang akan berhenti. Nilai yang disaranka untuk parameter ini adalah 0.45 – 2.

- E. Multiplicative Factor Security yaitu faktor pengali jarak aman kendaraan pada saat akan berhenti. Nilai default berkisar sampai 1 3.
- F. Lane Change Rule yaitu mode perilaku pengemudi pada saat melintas, untuk lalu lintas heterogen sangat cocok menggunakan mode Free Lane Change yang memungkinkan kendaraan menyiap dengan bebas.
- G. Overtake at Same Line yaitu perilaku pengemudi kendaraan yang ingin menyalip pada lajur yang sama baik dari sisi sebelah kanan mau pun sisi sebelah kiri.
- H. Desired Lateral Position yaitu posisi kendaraan pada saat berada di lajur artinya kendaraan dapat berada disamping kiri mau pun samping kanan kendaraan yang lain.
- I. Lateral Minimum Distance yaitu jarak aman pengemudi pada saat berada di samping kendaraan yang lain. Parameter ini dibagi menjadi dua bagian yaitu jarak kendaraan ketika berada di kecepatan 0 km/jam dan 50 km/jam artinya nilai parameter untuk parameter ini berbeda, nilai default untuk parameter ini berkisar antara 0.2 sampai 1 m.
- J. Safety Distance Reduction yaitu jarak aman antar kendaraan didepan dan dibelakang atau jarak gap dan clearing antar kendaraan, ini merupakan parameter yang sangat menentukan karena tiap kondisi lalu lintas mempunyai nilai jarak aman yang berbeda, adapun nilai defaultnya adalah 0.6 m untuk penelitian ini

2.6.4 Kecepatan Kendaraan Vissim

Menurut Marrisa Ulfah (2017) Kecepatan adalah jarak yang dapat ditempuh suatu kendaraan pada suatu ruas jalan per satuan waktu. Pada Vissim, distribusi kecepatan masing-masing kendaraan dapat ditentukan sesuai kondisi yang sewajarnya dengan memasukkan data kecepatan minimum dan maksimum serta nilai proporsionalnya. Ada pula pengaturan percepatan dan perlambatan kendaraan guna menyempurnakan performa dari tiap jenis kendaraan yang disimulasikan. Untuk pengukuran atau pembacaan hasil kecepatan kendaraan.

2.6.5 Panjang Antrian Vissim

Panjang antrian merupakan antrian kendaraan pada suatu lengan simpang yang ditimbulkan karena adanya hambatan. Panjang antrian terhitung mulai dari garis stop di tiap lengan hingga kendaraan terakhir yang berhenti dalam antrian. Panjangnya antrian (dalam satuan meter) bergantung pada ukuran panjang kendaraan, jarak antar kendaraan, serta perilaku pengemudi. Pada Vissim, panjang antrian dapat ditentukan pada setiap titik dalam suatu jaringan jalan, serta dapat dievaluasi untuk setiap interval waktu. Antrian diukur dari posisi hulu antrian hingga kendaraan terakhir yang telah masuk dalam keadaan antrian. Hasil yang didapatkan adalah berupa panjang antrian maksimum, panjang antrian rata-rata . (Marissa Ulfah, 2017).

2.6.6 Kelebihan Software Vissim

Sebagai software yang mendukung permodelan untuk situasi kompleks, maka *software vissim* memiliki keunggulan yang lebih banyak dibandingkan dengan software transportasi lain. Beberapa keunggulan PTV Vissim tersebut menurut Fei Huang dkk (2012), antara lain :

- Memiliki fasilitas simulasi untuk transportasi multimoda yang didukung dengan adanya fasilitas permodelan untuk sepeda, motorcycle, mobil, truck, light rail, dan pedestrian
- 2. Tidak memerlukan link-node coding seperti software lain

- 3. Dapat meniru dan menggambarkan beberapa fitur secara jelas
- 4. Memiliki output 3D animasi yang mencakup penggambaran mengenai situasi lingkungan di sekitar jalan secara *colorful*

2.6.7 Kekurangan Software Vissim

Terdapat beberapa kekurangan yang dimiliki oleh Software Vissim, antara lain :

- 1. Software Vissim ini sulit digunakan karena terlalu kompleks
- 2. Perlu pengetahuan lebih untuk melakukan pemodelan
- 3. Rawan terjadi lagging terutama untuk pemodelan 3D untuk jaringan yang besar.

2.7 Studi Terdahulu

Beberapa penelitian terdahulu yang berhubungan dengan mengenai PKJI 2014 dan metode Aplikasi PTV Vissim 9.0 antara lain sebagai berikut :

- Dalam penelitian berjudul "Simulasi Model Kinerja Pelayanan Ruas Jalan di Jakarta Menggunakan Aplikasi Vissim (Studi Kasus : Ruas Jalan Diponegoro)" (Imam S 2015) diketahui bahwa hasilnya adalah VCR pada jam sibuk rata-rata melebihi nilai 1 dan derajat kejenuhan mencapai tingkatan terendah, yaitu F, yang dipicu oleh aktivitas kegiatan sepanjang ruas jalan. Untuk perbaikan kualitas diperlukan beberapa langkah seperti rekayasa lalu lintas, larangan berheti kendaraan angkutan umum di sembarang tempat serta meningkatkan disiplin pejalan kaki.
- 2. Dalam penelitian berjudul "Penggunaan Software Vissim untuk Analisa Simpang Bersinyal (Studi Kasus : Simpang Jalan Veteran, Gajahmada, Pahlawan dan Budi Karya Pontianak, Kalimantan Barat) (Pebriyetti 2017) diketahui bahwa Untuk kondisi lapangan panjang antrian pada jam sibuk untuk Jalan Vetera 143,64 m, Jalan Gajahmada 134,2 m, Jalan Pahlawan 145,3 m dan Budi Karya 81,53 m. Sedangkan untuk kondisi dengan

menggunakan Manual Kapasitas Jalan Indonesia (MKJI) 1997 panjang antrian untuk Jalan Veteran 206,7 m, Jalan Gajahmada 225,5 m, Jalan Pahlawan 225,0 m dan Budi Karya 413,3 m. Sedangkan dengan metode software Vissim panjang antrian untuk Jalan Veteran 125,39 m, Jalan Gajahmada 90,76 m, Jalan Pahlawan 135,3 m dan Budi Karya 57,58 m. dan Untuk Tundaan rata-rata dengan mengunakan metode software Vissim 114, 82 detik sedangkan Manual Kapasitas Jalan Indonesia (MKJI) 1997 190,7 detik. Hasil yang paling mendekati dengan panjang antrian di lapangan adalah dengan mengunakan softwere Vissim (MKJI) 1997.

- 3. Dalam penelitian berjudul "Penggunaan Software Vissim untuk Evaluasi Hitungan MKJI 1997 Kinerja Ruas Jalan Perkotaan (Studi Kasus : Jalan Affandi, Yogyakarta)" (Ibnu Ariesmasto) bahwa terdapat perbedaan yang signifikan pada nilai kecepatan mobil dan sepeda motor pada MKJI 1997 dengan nilai kecepatan di lapangan, sedangkan pada nilai kecepatan mobil dan sepeda motor pada software Vissim serta kecepatan sepeda motor pada MKJI 1997 tidak terdapat perbedaan yang signifikan.
- 4. Dalam penelitian yang berjudul "Analisis Kapasitas Ruas Jalan Sam Ratulangi Dengan Metode MKJI 1997 dan PKJI 2014" (Rusdianto 2015) bahwa dengan MKJI 1997 kapasitas adalah 2895smp/jam dengan volume puncak segmen sebesar 2095 smp/jam, nilai derajat kejenuhan sebesar 0,72, kecepatan rata-rata sebesar 36,49 km/jam dan kecepatan arus bebas sebesar 39,99km/jam dilihat berdasarkan parameternya. Sedangkan dengan PKJI 2014 kapasitas adalah 2895skr/jam dengan volume puncak segmen sebesar 2095 skr/jam, nilai derajat kejenuhan sebesar 0,72, kecepatan rata- rata sebesar 36,49 km/jam dan kecepatan arus bebas sebesar 39,99km/jam dilihat berdasarkan parameternya. Kedua metode tersebut memberikan hasil nilai kinerja yang sama meskipun terdapat perbedaan satuan pada kedua metode tersebut. Sehingga untuk menganalisa kapasitas jalan perkotaan suatu segmen

ruas jalan bisa dengan menggunakan kedua metode tersebut yaitu MKJI 1997 maupun PKJI 2014.

2-33