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ABSTRACT 

 
This study shows how to implement 

Convolutional Neural Network(CNN) as action 

value function approximation to predict Q-Value on 

Q-Learning for every actions available, on the case 

of agent learning to play Flappy Bird game. The 

action value function approximation is used to 

reduce number of experiments in the exploration 

process and increase the score obtained by agent 

when playing the game, because based on previouse 

research using Q-Learning only, agent needs a lot of 

experiments playing the game during the exploration 

process to get good abilities seen from the scores 

obtained. There are two main phase in the systems, 

namely exploration and exploitation. Exploration is 

a learning process to gain knowledge of playing the 

game, the knowledge gained at this phase, then used 

at the exploitation phase. Exploitation is the testing 

process of the knowledge gained in the previous 

stage. The results of the study show that combining 

Q-Learning and CNN shows the results, the agent 

can complete the exploration process with an 

average of 2336.6 experiments and the average 

score obtained is 575.2 where 1 in 5 trials 

successfully touched a score of 1000.  

 

Kata kunci : Convolutional Neural Network (CNN), 

action-value function approximation, Q-Learning, 

agent, Flappy bird 

 

1. PRELIMINARY 
Flappy bird is a side-scrolling game that is 

played by controlling a bird up or down. The object 

of the game is to pass through the pipe gap, where 

the pipe gap has various heights. If the player makes 

it through the pipe then the score increases, if the 

player hits the pipe or the ground then the game is 

over. 

The previous research on the completion of the 

flappy bird game by Moritz [2] using Q-learning 

showed that for 1000 experiments the highest score 

obtained was 169 [1] smaller than the ability of 

human experts, namely Ryu Dragon who achieved a 

score of 328 [3]. In addition, it was explained that 

the ability of agents to get scores depends on the 

number of experiments in the exploration process, 

the more number of experiments the better the 

ability [2]. 

This happens because flappy bird has a dynamic 

component, namely the position of birds, pipes and 

gaps between the various pipes, resulting in a large 

state space and the exploration process requires 

many experiments because the action value function 

in Q-Learning cannot predict the Q-value of an 

action in a new state [2]. These problems can be 

overcome by improvising to generalize state [2] so 

that the agent can predict the Q-value of an action in 

a state that has never been encountered before. 

One improvisation is adding an action value 

function approximation to the Q-Lerning algorithm 

[4] to predict the Q-value of an action in a particular 

state. The use of this method can generalize the state 

space so that the agent can reduce the number of 

exploration process experiments while still getting 

good results [4]. Previous research related to the use 

of Convolutional Neural Network (CNN) as an 

action value function approximation in Q-Learning 

was conducted by Mnih and colleagues [4] as the 

pioneers of this combination for the game case of 

Atari 2600. Obtained results, 3 of 7 games managed 

to surpass the ability of human experts [5]. Another 

study by Ajay Rao and colleagues [6] used a 

combination of Q-Learning and CNN in 8 games 

from OpenAI-Gym. The research explains that the 

use of CNN as an action value function 

approximation can generalize dynamic state space 

and suitable for the case of autonomous systems [6].  

Therefore, this research will implement Q-

Learning combined with the Convolutional Neural 

Network in the case of agents playing flappy birds. 

 

2. CONTENT OF STUDY 
There are two main stages that will be carried out 

on the system being built, namely the exploration 

and exploitation stage. One iteration at this stage is 

same as one frame in the game. The description of 

the stages that will be carried out can be seen in 

Figure 1. System Overview. 



 

 

 
Figure 1. System Overview 

 The first stage is exploration, which is the agent 

learning phase of how to play the flappy bird game, 

this stage starts from the agent getting the current 

state of the game (in the form of a state of the game 

image), then preprocessing the image. Preprocessing 

consists of image cropping, conversion to grayscale, 

resize and thresholding. After preprocessing the 

agent will choose an action with epsilon probability, 

after the action is obtained and executed in the game 

the agent will get a reward, next state and terminal 

as feedback. Then, the agent preprocesses the next 

state. After that, the current state of the results of 

preprocessing, action, reward, next state and 

terminal (called experience) input into the reply 

memory and train the CNN model with training data 

(experience) taken randomly as many as 32 

experiences (batch) from reply memory. Finally, 

update the next state to the current state and the 

process is repeated from the stage of choosing the 

action with epsilon probability. This stage has a stop 

condition when the agent touches a score of 20 or 

when the agent has played the game for 1000000 

frames.  

 The second stage is exploitation, which is the 

stage of using the CNN model that has been trained 

at the exploitation stage. This stage begins with the 

agent getting the current state of the game, then the 

current state is preprocessed. Furthermore, the agent 

will choose an action using the CNN model with the 

input current state that has been preprocessed. The 

output of the CNN model is the Q-value of each 

action an agent can take. After the Q-value of each 

action is obtained, the agent will choose the action 

with the largest Q-value. At the exploitation stage 

the maximum score used is 1000. 

 

2.1. Input Data 

 There are several input data used in this method, 

including: 

2.1.1. State 

 State is the image of the state of the game. There 

are two types of states, namely the current state 

which is the current state or the state before the 

action is executed and the next state is the state after 

the action is executed. Examples of states can be 

seen Figure 2. Game State. 

 
Figure 2. Game State 

2.1.2. Action 

 In the flappy bird game there are 2 actions that 

can be done by the agent and each action is given an 

integer value. The following actions can be taken: 

1. Value 0 to go down. 

2. Value 1 to go up. 

 

2.1.3. Reward 

 Reward is the value obtained by the agent for 

each action performed in a particular state. The 

rewards used in this study include: 

1. +1  when the bird made it through the pipe. 

2. 0,1 when then bird is still alive.  

3. -1  when a bird crashes into a pipe or ground/ 

 

2.1.4. Terminal 

 Terminal is the game status after an action is 

performed, the data type of the terminal is boolean. 

The terminal is True, if after the action is executed 

the game ends. The terminal is false if the bird still 

survives after the action is executed. 

 

2.2. Preprocessing 

 Preprocessing is the stage of processing the 

original input data (called state) before the data is 

used at a later stage. Original data input is an image 

of the state of the game. The image will go through a 

preprocessing process including cutting, converting 

RGB to grayscale, resizing and thresholding. 

 

2.2.1. Cutting 

 Image cutting is the process by which parts of 

the image are removed with certain coordinates. In 

this process the original image has a size of 288 x 

512 will be cut in the Y axis from coordinates 401 to 

512, while the X axis will not be cut. So we get the 

coordinates of the upper left corner (0, 0) and lower 

right (288, 400). Then the images contained in 

coordinates (0, 0) through (288, 400) will be 

preserved and images with coordinates (0, 401) until 

coordinates (288, 512) will be discarded. 



 

 

 
Figure 3. Cutting Illustration 

2.2.2. Grayscale 

 The initial input image has 3 color channels 

namely red, blue and green. In the process of 

converting an RGB image to grayscale, the channel 

on the image will change to 1 and this can ease the 

process of computing the system [6]. Calculation of 

conversion of RGB to grayscale images can use the 

equation below. 

   (1) 

Information: 

 I  = grayscale value. 

 R = red chanel value 

 G = green chanel value 

 B = blue chanel value 

Here is the image of the conversion to grayscale. 

 
Figure 4. Grayscale Result Imagery 

2.2.3. Resize 

 Resize is the process of changing the image size 

as desired. Image resizing can be downsampling or 

upsampling, in this study the image will be 

downsampled from the initial size of 288 x 512 

pixels to 32 x 32 pixels. In the downsampling 

process, the middle value of a kernel is taken to 

represent the kernel [9]. The determination of the 

kernel size is taken from the initial image size 

quotient with the resulting image. Calculation of 

image downsampling using binary interpolation 

method. Bilinear interpolation is a continuation of 

linear interpolation for two-axis or variable 

interpolation [6]. The way it works is to use linear 

interpolation first on one axis then on the other axis. 

The interpolation equation is as follows.  

     (2) 

Information: 

f(x, y)  = interpolated pixel value 

x = x axis coordinates 

y = y axis coordinates 

y1 = y1 axis coordinates 

y2 = y2 axis coordinates 

Illustration of image resizing results can be seen 

below. 

 
Figure 5. Resize Illustration 

2.2.4. Thresholding  

 Thresholding is a method that makes the image 

value only consists of two values. Thresholding has 

a threshold, this study will use the threshold binary 

inverted method with a threshold value of 127, a 

maximum value of 255 and a minimum of 0, the 

following is the equation. 

   (3) 

Illustration of thresholding image conversion can be 

seen 

below.

 
Figure 6. Thresholding Illustration 

2.3. Selection of Action with Epsilon 

Probability 

 The process of selecting an action with epsilon 

probability consists of several steps, the following is 

an overview of the steps. 

 
Figure 7. The Process of Choosing Actions with 

Epsilon Probability 

 The process begins with the initialization of the 

initial epsilon value of 1.0, the end of epsilon 0.0001 

and the reduction of epsilon by 0.0000198, which 

will continue to reduce the epsilon value in each 

frame. Next, generate random values between 0 to 1 

and compare with epsilon. If the random value is 

smaller than epsilon, then the agent will choose a 

random action between 0 or 1. If the random value is 

greater than epsilon, then the agent will choose the 

action with the largest Q-value obtained from the 

feedforward CNN output with current state input . 

 



 

 

2.4. Q-Learning Method Combined with CNN 

 In the combination method, CNN will be used as 

an action value function approximation in Q-

Learning to predict the Q-value of each action in the 

current state and the agent will determine the action 

to be taken by comparing the Q-value of each action, 

the action with the largest Q-value will be chosen. In 

the CNN training process, the target that will be 

used to calculate the loss and gradient calculation is 

the value iteration update equation contained in the 

Q-learning method, along with the 

equation.

  (4)  

Keterangan: 

Y’   = CNN training target 

r   = reward the agent gets 

γ   = Discount rate, 0 ≤ γ ≤ 1, 

 = predictive value or CNN 

feedforward process in the next 

state of training data with 

maximum output values 

Terminal = The game status is in the next 

state, whether it ends or not 

 The architecture of CNN used in this study is as 

follows. 

 
Figure 8. CNN Architecture 

2.4.1. Feedforward  
 At the feedforward CNN stage the input data is 

the preprocessed state that will pass through the 

convolutional layer A, convolutional layer B and 

fully-connected layer to produce 2 outputs 

containing Q-Value for each action. 

 

a. Convolution Layer A 

 Convolutional layer consists of arranged neurons 

that form a square (filter). The operation that occurs 

in the layer is the dot product between the filter and 

the input image, the filter will continue to be shifted 

by stride until the entire image surface. The results 

of the operation are called feature maps. In 

Convolution Layer A there are 3 5x5 filters with 

stride 3, the following is the equation of the 

operation that occurs in filter A. 

(5) 

Information: 

FA1 = feature map of operating results 

A1  = filter A1 

C  = image input 

bA = bias 

i  = line in the feature map 

j  = column in the feature map 

m  = row in the filter 

n  = column in the filter. 

After getting the FA1 feature map, then run the 

ReLU activation function, with the equation. 

RA1(x, y) = max(0, RA1(x, y))  (6) 

Information: 

 RA1 = feature map of the activation function 

The activation function will change the negative 

value to 0. 

 

b. Convolution Layer 

 In convolutional layer B, the same process will 

be carried out as in convolutinal layer A, except that 

the input is triplicate, namely feature maps RA1, 

RA2 and RA3. In convolutional layer B there are 3 

7x7 filters with stride 1. Here is the formula. 

  

     (7) 

Information: 

FB1 = feature map of operating results 

B1  = filter B1 

RAc  = RA filter input to c 

bB  = bias 

i  = line in the feature map 

j  = column in the feature map 

m  = row in the filter 

n  = column in the filter. 

After getting the FA1 feature map, then perform the 

same function as the previous layer, namely ReLU 

and produce the FB feature map. This layer produces 

3 4x4 feature maps, which will then enter the fully-

connected layer. 

 

c. Fully Connected Layer 

 Fully Connected Layer is a multilayer perceptron 

neural netrowk (MLP), which has hidden input and 

output layers. It is the Fully connected layer that will 

regress the input state into the Q-value of each 

action. The following are the layers. 

 Input layer (flatten) 

 In the input layer there will be an input 

leveling process in the form of 4x4 feature maps 

totaling 3 so that the number of nodes in the 

input layer is 48. 

 Hidden layer 

 In the hidden layer of architecture that is 

used has 10 nodes, 48 nodes in the input layer 

will be connected entirely with 10 hidden layer 

nodes. So that the total weight contained is 480, 

the following is the calculation equation. 

  (8) 

Information: 

z_ini = calculation results that will be input 

to the hidden layer node 

Xj = value of node X to j 

Vj, i  = the weight value of V to j and to i 

bV  = bias value on hidden layer V 

 then calculate the value of exit Z, which is 

the result of the process of the hidden layer node. 

After that, calculate the Z output value by 



 

 

activating the ReLU activation function at the 

z_in input value. 

 

 

 Output layer 

 The output layer has 2 output nodes (a number of 

actions agents can do), each node is connected to the 

output layer Z. An operation occurs using the 

equation below. 

 (9) 

Information: 

𝑦_𝑖𝑛i = input for Y layer output node 

Zj  = value of node Z to j 

Wj, i  = value of weight W to j, to i 

bWi   = bias value to i 

n  = number of nodes in hidden layer Z 

After getting y_in then run the linear activation 

function to output the Y value. Here is the equation 

of the linear activation function. 

     (10) 

Information 

x = input 

φ = activation function 

The output layer has 2 outputs (number of actions, 0 

and 1), the value generated from feedforward is the 

Q-Value of each action. 

 

2.4.2. Backpropagation 

 At this stage the gradient calculation of each 

parameter is performed to correct the parameter 

value based on the error value. The error value used 

comes from the feedforward process. The 

backpropagation process consists of several 

calculations, along with the flow of calculations. 

 

a. Calculation of Loss Value 

 Loss function is a function that will produce an 

error value from the prediction of a model to the 

target, for the general regression case using Mean 

Squared Error (MSE). Below is the equation. 

   (11) 

Information: 

L = Loss Value 

n = amount of data (output) 

Y = predictive value 

Y '= target value 

 

b. Gradient Calculations in The Output 

Layer 

 After calculating the loss value, then calculate 

the gradient parameter W to Loss, using the formula 

chain rule. 

   (12) 

Information: 

  = The parameter gradient W respect  

  to loss L 

  = MSE partial derivative, i.e. 2 (Yi - Y’i) 

 = The derivative of the Linear activation  

  function, i.e. 1 

 = The parameter gradient W respect to  

 the y_in matrix, i.e. Z 

 

c. Gradient Calculations in The Hidden 

Layer 

 Next, calculate the gradient of the parameter V to 

Loss, with the chain rule formula as follows. 

   (13) 

Information: 

  = The parameter gradient V with 

  respect to loss L 

  = Z parameter gradient to the matrix  

  yini, i.e. weight value of Wj,i  

 = derivative of the ReLU  

  with respect to z_in, i.e.  

 = The parameter gradient V with 

  respect to z_in, i.e. nilai Xk 

 

d. Gradient Calculations in The Convolution 

Layer B 

 Next calculate the gradient of the filter parameter 

B for loss, using the following chain rule. 

   (14) 

Before calculating the gradient of filter B, first 

calculate , using the chain rule formula, as 

follows. 

  (15) 

Information: 

 = The Gradient X matrixs with 

  respect to loss L 

 = The Gradient X matrixs respect 

to z_inj, i.e. weights Vk,j  

After , calculate the value of  with the 

following formula. 

    (16) 

Information: 

 = Gradient feature map FB respect to  

  Loss L. 

   =Gradient X matrixs respect ti Loss L 

  = derivative of the ReLU  

  with respect to FB, i.e.  



 

 

After  is known, conduct a convolution between 

and the RA1, RA2 and RA3 featuure to obtain 

the gradient , following the formula 

 (16) 

 

 

Information: 

  = The parameter Gradient Filter B  

  respect ti Loss L. 

 = Gradient feature map FB respect to  

  Loss L 

 RAc = Featuremap RA 

 

e. Gradient Calculations in The Convolution 

Layer A 

 Finally, the gradient calculation of the filter 

parameter A uses the chain rule formula. 

  (17) 

Before calculating the gradient of filter A, first 

calculate , using the chain rule formula by cross-

correlating between and Filter Bi. Here's the 

equation. 

(18) 

Information: 

 = Gradient feature map RA respect to  

  Loss L 

   = Filter B1 

 = Gradient feature FB respect to Loss L 

After getting the . matrix. Next do the 

calculation of the value of . 

   (19) 

Information: 

 = Gradient feature map F respect to  

  Loss L 

 = Gradient feature map RA respect to  

  Loss L 

  = derivative of the ReLU  

  with respect to FA, i.e.  

After the value is known  do the convolution 

process between  and the input image C to 

produce the gradient . Here's the equation. 

 (20) 

Infotmation: 

  = Gradient Filter A respect to loss L 

  = Gradien feature map F respectto loss L 

 C      = input image 
 

f. Parameter Update 

 The weight update process will use Adam based 

on the obtained gradient value. Adam is a first order 

gradient based weight optimization method of 

stochastic objective functions, based on the adaptive 

estimation of low order moments, with 

equations.

 
Information: 

   = decay of momentum 1, beta1 

 = decay of momentum 2, beta2 

 = parameter gradien value 

 = first vector moment, where  = 0 

   = second vector moment, where  = 0 

 = estimated bias-corrected vector 

  from the first moment. 

  = estimated bias-corrected vector 

  from the second moment. 

 α  = learningrate, alpha 

 = old weights value 

     = new weights value 

  = epsilon preventive of divider 0, 10-8 

 

2.5. Selecting Actions with CNN 

 The process of selecting actions with CNN has 

several steps, the following is an overview of the 

steps. 

 
Figure 9. steps for selecting actions with CNN 

 The process starts with feedforward on CNN 

with current state input, the output of feedforward is 

the Q-value for each action (0 and 1). Then the agent 

will decide the action to be taken by comparing the 

Q-value of all actions, the action with the largest Q-

value will be the selected action and then executed 

in the flappy bird game. The following is an 

illustration of the process of selecting action with 

CNN.

 
Figure 10. Illustration of Action Selection with 

CNN 

2.6. Peformance Testing 

Performance testing is done to measure the 

performance of the algorithm applied and see the 

effect of each change in the parameters of the 

algorithm. the purpose of testing is to find the 

optimal combination of parameters so that the 

average number of smallest experiments needed in 



 

 

the exploration process and the largest score that can 

be obtained by the agent can be known. As a note in 

the process of testing the position of a random pipe 

and not set the same between one experiment with 

another experiment. The following is the 

performance testing scenario. 

Table 1. Testing Scenario 

Parameter Nilai 

Learning Rate 0.1, 0.01, 0.001 

Discount Rate 0.1,   0.5,   0.99 

Ukuran Batch    8,    16,      32 

Kondisi Henti  10,    15,      20 
 

2.6.1. Learning Rate Testing 

 In this test using three values, namely 0.001, 0.01 

and 0.1, the other parameters are the discount rate of 

0.99, batch size of 32 and stop conditions at a score 

of 20. Experiments that fail to meet the stop 

conditions are marked with a star (*) on the contents 

of the table cell with the column number an 

experimental exploration process. 

Table 2. Learning Rate Testing Results 

Number of 

experiments
Score

Number of 

experiments
Score

Number of 

experiments
Score

1
323 

experiments
892

*7420 

experiments
11

*6279 

experiments
4

2
222 

experiments
1000

*7558 

experiments
22

*7005 

experiments
2

3
*4797 

experiments
5

*4336 

experiments
14

348 

experiments
351

4
*5417 

experiments
5

576 

experiments
724

*4843 

experiments
13

5
924 

experiments
974

*4851 

experiments
15

*6418 

experiments
8

Avera

ge

2336,6 

experiments
575,2

4948,2 

experiments
157,2

4978,6 

experiments
75,6

No

0,1 0,01 0,001

 
The test results show the use of the value of 0.001 

has the best results where the exploration process is 

completed with an average of 2336.6 experiments 

and an average score of 575.2. In addition, 

experiments that fail to meet stop conditions always 

score poorly. This shows the use of a very small 

learning rate increases the guarantee of the learning 

process to find optimal results while a learning rate 

that is too large will increase the likelihood of 

learning outcomes not converging and giving poor 

results [7]. 

 

2.6.2. Discount Rate Testing 

 In this test using three values, namely 0.1, 0.5 

and 0.9, for other parameters using a learning rate of 

0.1, batch size 32 and stop conditions at a score of 

20. Trials that fail to meet the stop conditions are 

marked with a star (*) on the contents of the table 

cell with the column number an experimental 

exploration process. 

Table 3. Discount Rate Testing Results 

Number of 

experiments
Score

Number of 

experiments
Score

Number of 

experiments
Score

1
*11203 

experiments
1

*4342 

experiments
4

323 

experiments
892

2
*8422 

experiments
0

*5717 

experiments
12

222 

experiments
1000

3
*9257 

experiments
2

*4372 

experiments
5

*4797 

experiments
5

4
*9510 

experiments
1

*4290 

experiments
5

*5417 

experiments
5

5
*11048 

experiments
1

*4088 

experiments
7

924 

experiments
974

Avera

ge

9888 

experiments
1

4561,8 

experiments
6,6

2336,6 

experiments
575,2

No

0,1 0,5 0,99

 
The test results show the use of 0.99 has the best 

results where 3 out of 5 trials successfully met the 

stop conditions with an average of 2336.6 trials and 

an average score of 575.2. In addition, the 

assumptions in the previous test occur, namely 

experiments that fail to meet the stop conditions tend 

to give a bad score. If seen as a whole, the use of a 

smaller discount rate tends to give worse results, this 

shows the use of a discount rate that is closer to 1 

will give optimal results seen from the score 

obtained by the agent [8].  

 

2.6.3. Batch Size Testing 

 In this test using three values, namely 8, 16 and 

32, for other parameters using a learning rate of 0.1, 

a discount rate of 0.99 and a stop condition at a 

score of 20. Experiments that fail to meet the stop 

conditions are marked with a star (*) on the contents 

of the table cell with the column number an 

experimental exploration process. 

Table 4. Batch Size Testing Results 

Number of 

experiments
Score

Number of 

experiments
Score

Number of 

experiments
Score

1
*4187 

experiments
0

873 

experiments
83

323 

experiments
892

2
*5968 

experiments
6

1053 

experiments
937

222 

experiments
1000

3
*5244 

experiments
7

*6580 

experiments
6

*4797 

experiments
5

4
*7513 

experiments
3

*8478 

experiments
0

*5417 

experiments
5

5
*6378 

experiments
21

*7069 

experiments
13

924 

experiments
974

Avera

ge

5858 

experiments
7,4

4810,6 

experiments
207,8

2336,6 

experiments
575,2

No

8 16 32

 
The test results show the use of a value of 32 has the 

best results, both seen from the average number of 

experiments in the exploration process and the 

scores obtained. The smaller the batch size used the 

results obtained tend to get worse. In addition, in 

experiment 1 with a batch size of 16 where the agent 



 

 

managed to meet the stop conditions at 873 but the 

scores obtained were quite far compared to other 

experiments that managed to meet the stop 

conditions, the results showed the batch size had an 

effect on the stability of exploration process, 

resulting in a decrease in the ability of the agent. 

This is consistent with J Lin's research regarding the 

relationship of batch size with the stability of the 

learning process [9]. 

 

2.6.4. Stop Condition Testing 

 In this test using three values, namely 10, 15 and 

20, for other parameters using a learning rate of 0.1, 

a discount rate of 0.99 batch size 32. Experiments 

that fail to meet the stop conditions are marked with 

a star (*) on the contents of the table cell. 

Table 5. Stop Condition Testing Results 

Number of 

experiments
Score

Number of 

experiments
Score

Number of 

experiments
Score

1
76 

experiments
11

202 

experiments
1000

323 

experiments
892

2
1014 

experiments
2

701 

experiments
61

222 

experiments
1000

3
129 

experiments
1

165 

experiments
1000

*4797 

experiments
5

4
1212 

experiments
20

*4914 

experiments
5

*5417 

experiments
5

5
373 

experiments
21

*7408 

experiments
8

924 

experiments
974

Avera

ge

560,8 

experiments
11

2678 

experiments
414,8

2336,6 

experiments
575,2

No

10 15 20

 
The test results show the use of stop conditions 10 

showed the best results with an average of 560.8 

times the experiment and always managed to meet 

the stop conditions. However, the stop condition 10 

actually shows the worst results when viewed from 

the score obtained, which is an average of 11. It 

shows that the stop conditions that are too early can 

accelerate the exploration process, but can result in 

the score that is not too good. So that the selection of 

stop conditions in the exploration process will 

greatly affect the ability of agents to get scores when 

playing games [11]. 

 

3. CLOSING 
In this section contains the results of the study, 

namely conclusions and suggestions. 

3.1. Conclusion 

 Based on the results of research conducted on the 

implementation of the Q-Learning algorithm 

combined with CNN for the case of an agent playing 

a flappy bird, the average number of experiments 

needed to complete the exploration process is 2336.6 

experiments and the average score obtained is 575 , 

2. However, the exploration process is inconsistent 

where the agent does not always succeed in meeting 

the stop conditions and the large number of 

experiments during the exploration process does not 

always be directly proportional to the score obtained 

by the agent during the exploitation process. 

3.2. Suggestion 

 In this study there are many deficiencies that 

occur. As for suggestions that can be given for 

development in further research to be better, 

including: 

1. Adding a weight intializayion method. 

2. Reserve weights used as checkpoints when the 

exploration process is not going well. 

3. Try to compare another methods with CNN to 

find out the best method in the case of flappy 

bird game. 
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