

IMPLEMENTATION OF Q-LEARNING COMBINED WITH

CONVOLUTIONAL NEURAL NETWORK ON AGENTS THAT PLAY

FLAPPY BIRD GAME

Fajar Abdi Nugraha1, Ednawati Rainarli2

1,2 Informatics Engineering – Indonesian Computer University

Jl. Dipatiukur 112-114 Bandung

 E-mail : nugrahafajar37@gmail.com1, ednawati.rainarli@email.unikom.ac.id2

ABSTRACT

This study shows how to implement

Convolutional Neural Network(CNN) as action

value function approximation to predict Q-Value on

Q-Learning for every actions available, on the case

of agent learning to play Flappy Bird game. The

action value function approximation is used to

reduce number of experiments in the exploration

process and increase the score obtained by agent

when playing the game, because based on previouse

research using Q-Learning only, agent needs a lot of

experiments playing the game during the exploration

process to get good abilities seen from the scores

obtained. There are two main phase in the systems,

namely exploration and exploitation. Exploration is

a learning process to gain knowledge of playing the

game, the knowledge gained at this phase, then used

at the exploitation phase. Exploitation is the testing

process of the knowledge gained in the previous

stage. The results of the study show that combining

Q-Learning and CNN shows the results, the agent

can complete the exploration process with an

average of 2336.6 experiments and the average

score obtained is 575.2 where 1 in 5 trials

successfully touched a score of 1000.

Kata kunci : Convolutional Neural Network (CNN),

action-value function approximation, Q-Learning,

agent, Flappy bird

1. PRELIMINARY
Flappy bird is a side-scrolling game that is

played by controlling a bird up or down. The object

of the game is to pass through the pipe gap, where

the pipe gap has various heights. If the player makes

it through the pipe then the score increases, if the

player hits the pipe or the ground then the game is

over.

The previous research on the completion of the

flappy bird game by Moritz [2] using Q-learning

showed that for 1000 experiments the highest score

obtained was 169 [1] smaller than the ability of

human experts, namely Ryu Dragon who achieved a

score of 328 [3]. In addition, it was explained that

the ability of agents to get scores depends on the

number of experiments in the exploration process,

the more number of experiments the better the

ability [2].

This happens because flappy bird has a dynamic

component, namely the position of birds, pipes and

gaps between the various pipes, resulting in a large

state space and the exploration process requires

many experiments because the action value function

in Q-Learning cannot predict the Q-value of an

action in a new state [2]. These problems can be

overcome by improvising to generalize state [2] so

that the agent can predict the Q-value of an action in

a state that has never been encountered before.

One improvisation is adding an action value

function approximation to the Q-Lerning algorithm

[4] to predict the Q-value of an action in a particular

state. The use of this method can generalize the state

space so that the agent can reduce the number of

exploration process experiments while still getting

good results [4]. Previous research related to the use

of Convolutional Neural Network (CNN) as an

action value function approximation in Q-Learning

was conducted by Mnih and colleagues [4] as the

pioneers of this combination for the game case of

Atari 2600. Obtained results, 3 of 7 games managed

to surpass the ability of human experts [5]. Another

study by Ajay Rao and colleagues [6] used a

combination of Q-Learning and CNN in 8 games

from OpenAI-Gym. The research explains that the

use of CNN as an action value function

approximation can generalize dynamic state space

and suitable for the case of autonomous systems [6].

Therefore, this research will implement Q-

Learning combined with the Convolutional Neural

Network in the case of agents playing flappy birds.

2. CONTENT OF STUDY
There are two main stages that will be carried out

on the system being built, namely the exploration

and exploitation stage. One iteration at this stage is

same as one frame in the game. The description of

the stages that will be carried out can be seen in

Figure 1. System Overview.

Figure 1. System Overview

 The first stage is exploration, which is the agent

learning phase of how to play the flappy bird game,

this stage starts from the agent getting the current

state of the game (in the form of a state of the game

image), then preprocessing the image. Preprocessing

consists of image cropping, conversion to grayscale,

resize and thresholding. After preprocessing the

agent will choose an action with epsilon probability,

after the action is obtained and executed in the game

the agent will get a reward, next state and terminal

as feedback. Then, the agent preprocesses the next

state. After that, the current state of the results of

preprocessing, action, reward, next state and

terminal (called experience) input into the reply

memory and train the CNN model with training data

(experience) taken randomly as many as 32

experiences (batch) from reply memory. Finally,

update the next state to the current state and the

process is repeated from the stage of choosing the

action with epsilon probability. This stage has a stop

condition when the agent touches a score of 20 or

when the agent has played the game for 1000000

frames.

 The second stage is exploitation, which is the

stage of using the CNN model that has been trained

at the exploitation stage. This stage begins with the

agent getting the current state of the game, then the

current state is preprocessed. Furthermore, the agent

will choose an action using the CNN model with the

input current state that has been preprocessed. The

output of the CNN model is the Q-value of each

action an agent can take. After the Q-value of each

action is obtained, the agent will choose the action

with the largest Q-value. At the exploitation stage

the maximum score used is 1000.

2.1. Input Data

 There are several input data used in this method,

including:

2.1.1. State

 State is the image of the state of the game. There

are two types of states, namely the current state

which is the current state or the state before the

action is executed and the next state is the state after

the action is executed. Examples of states can be

seen Figure 2. Game State.

Figure 2. Game State

2.1.2. Action

 In the flappy bird game there are 2 actions that

can be done by the agent and each action is given an

integer value. The following actions can be taken:

1. Value 0 to go down.

2. Value 1 to go up.

2.1.3. Reward

 Reward is the value obtained by the agent for

each action performed in a particular state. The

rewards used in this study include:

1. +1 when the bird made it through the pipe.

2. 0,1 when then bird is still alive.

3. -1 when a bird crashes into a pipe or ground/

2.1.4. Terminal

 Terminal is the game status after an action is

performed, the data type of the terminal is boolean.

The terminal is True, if after the action is executed

the game ends. The terminal is false if the bird still

survives after the action is executed.

2.2. Preprocessing

 Preprocessing is the stage of processing the

original input data (called state) before the data is

used at a later stage. Original data input is an image

of the state of the game. The image will go through a

preprocessing process including cutting, converting

RGB to grayscale, resizing and thresholding.

2.2.1. Cutting

 Image cutting is the process by which parts of

the image are removed with certain coordinates. In

this process the original image has a size of 288 x

512 will be cut in the Y axis from coordinates 401 to

512, while the X axis will not be cut. So we get the

coordinates of the upper left corner (0, 0) and lower

right (288, 400). Then the images contained in

coordinates (0, 0) through (288, 400) will be

preserved and images with coordinates (0, 401) until

coordinates (288, 512) will be discarded.

Figure 3. Cutting Illustration

2.2.2. Grayscale

 The initial input image has 3 color channels

namely red, blue and green. In the process of

converting an RGB image to grayscale, the channel

on the image will change to 1 and this can ease the

process of computing the system [6]. Calculation of

conversion of RGB to grayscale images can use the

equation below.

 (1)

Information:

 I = grayscale value.

 R = red chanel value

 G = green chanel value

 B = blue chanel value

Here is the image of the conversion to grayscale.

Figure 4. Grayscale Result Imagery

2.2.3. Resize

 Resize is the process of changing the image size

as desired. Image resizing can be downsampling or

upsampling, in this study the image will be

downsampled from the initial size of 288 x 512

pixels to 32 x 32 pixels. In the downsampling

process, the middle value of a kernel is taken to

represent the kernel [9]. The determination of the

kernel size is taken from the initial image size

quotient with the resulting image. Calculation of

image downsampling using binary interpolation

method. Bilinear interpolation is a continuation of

linear interpolation for two-axis or variable

interpolation [6]. The way it works is to use linear

interpolation first on one axis then on the other axis.

The interpolation equation is as follows.

 (2)

Information:

f(x, y) = interpolated pixel value

x = x axis coordinates

y = y axis coordinates

y1 = y1 axis coordinates

y2 = y2 axis coordinates

Illustration of image resizing results can be seen

below.

Figure 5. Resize Illustration

2.2.4. Thresholding

 Thresholding is a method that makes the image

value only consists of two values. Thresholding has

a threshold, this study will use the threshold binary

inverted method with a threshold value of 127, a

maximum value of 255 and a minimum of 0, the

following is the equation.

 (3)

Illustration of thresholding image conversion can be

seen

below.

Figure 6. Thresholding Illustration

2.3. Selection of Action with Epsilon

Probability

 The process of selecting an action with epsilon

probability consists of several steps, the following is

an overview of the steps.

Figure 7. The Process of Choosing Actions with

Epsilon Probability

 The process begins with the initialization of the

initial epsilon value of 1.0, the end of epsilon 0.0001

and the reduction of epsilon by 0.0000198, which

will continue to reduce the epsilon value in each

frame. Next, generate random values between 0 to 1

and compare with epsilon. If the random value is

smaller than epsilon, then the agent will choose a

random action between 0 or 1. If the random value is

greater than epsilon, then the agent will choose the

action with the largest Q-value obtained from the

feedforward CNN output with current state input .

2.4. Q-Learning Method Combined with CNN

 In the combination method, CNN will be used as

an action value function approximation in Q-

Learning to predict the Q-value of each action in the

current state and the agent will determine the action

to be taken by comparing the Q-value of each action,

the action with the largest Q-value will be chosen. In

the CNN training process, the target that will be

used to calculate the loss and gradient calculation is

the value iteration update equation contained in the

Q-learning method, along with the

equation.

 (4)

Keterangan:

Y’ = CNN training target

r = reward the agent gets

γ = Discount rate, 0 ≤ γ ≤ 1,

 = predictive value or CNN

feedforward process in the next

state of training data with

maximum output values

Terminal = The game status is in the next

state, whether it ends or not

 The architecture of CNN used in this study is as

follows.

Figure 8. CNN Architecture

2.4.1. Feedforward
 At the feedforward CNN stage the input data is

the preprocessed state that will pass through the

convolutional layer A, convolutional layer B and

fully-connected layer to produce 2 outputs

containing Q-Value for each action.

a. Convolution Layer A

 Convolutional layer consists of arranged neurons

that form a square (filter). The operation that occurs

in the layer is the dot product between the filter and

the input image, the filter will continue to be shifted

by stride until the entire image surface. The results

of the operation are called feature maps. In

Convolution Layer A there are 3 5x5 filters with

stride 3, the following is the equation of the

operation that occurs in filter A.

(5)

Information:

FA1 = feature map of operating results

A1 = filter A1

C = image input

bA = bias

i = line in the feature map

j = column in the feature map

m = row in the filter

n = column in the filter.

After getting the FA1 feature map, then run the

ReLU activation function, with the equation.

RA1(x, y) = max(0, RA1(x, y)) (6)

Information:

 RA1 = feature map of the activation function

The activation function will change the negative

value to 0.

b. Convolution Layer

 In convolutional layer B, the same process will

be carried out as in convolutinal layer A, except that

the input is triplicate, namely feature maps RA1,

RA2 and RA3. In convolutional layer B there are 3

7x7 filters with stride 1. Here is the formula.

 (7)

Information:

FB1 = feature map of operating results

B1 = filter B1

RAc = RA filter input to c

bB = bias

i = line in the feature map

j = column in the feature map

m = row in the filter

n = column in the filter.

After getting the FA1 feature map, then perform the

same function as the previous layer, namely ReLU

and produce the FB feature map. This layer produces

3 4x4 feature maps, which will then enter the fully-

connected layer.

c. Fully Connected Layer

 Fully Connected Layer is a multilayer perceptron

neural netrowk (MLP), which has hidden input and

output layers. It is the Fully connected layer that will

regress the input state into the Q-value of each

action. The following are the layers.

 Input layer (flatten)

 In the input layer there will be an input

leveling process in the form of 4x4 feature maps

totaling 3 so that the number of nodes in the

input layer is 48.

 Hidden layer

 In the hidden layer of architecture that is

used has 10 nodes, 48 nodes in the input layer

will be connected entirely with 10 hidden layer

nodes. So that the total weight contained is 480,

the following is the calculation equation.

 (8)

Information:

z_ini = calculation results that will be input

to the hidden layer node

Xj = value of node X to j

Vj, i = the weight value of V to j and to i

bV = bias value on hidden layer V

 then calculate the value of exit Z, which is

the result of the process of the hidden layer node.

After that, calculate the Z output value by

activating the ReLU activation function at the

z_in input value.

 Output layer

 The output layer has 2 output nodes (a number of

actions agents can do), each node is connected to the

output layer Z. An operation occurs using the

equation below.

 (9)

Information:

𝑦_𝑖𝑛i = input for Y layer output node

Zj = value of node Z to j

Wj, i = value of weight W to j, to i

bWi = bias value to i

n = number of nodes in hidden layer Z

After getting y_in then run the linear activation

function to output the Y value. Here is the equation

of the linear activation function.

 (10)

Information

x = input

φ = activation function

The output layer has 2 outputs (number of actions, 0

and 1), the value generated from feedforward is the

Q-Value of each action.

2.4.2. Backpropagation

 At this stage the gradient calculation of each

parameter is performed to correct the parameter

value based on the error value. The error value used

comes from the feedforward process. The

backpropagation process consists of several

calculations, along with the flow of calculations.

a. Calculation of Loss Value

 Loss function is a function that will produce an

error value from the prediction of a model to the

target, for the general regression case using Mean

Squared Error (MSE). Below is the equation.

 (11)

Information:

L = Loss Value

n = amount of data (output)

Y = predictive value

Y '= target value

b. Gradient Calculations in The Output

Layer

 After calculating the loss value, then calculate

the gradient parameter W to Loss, using the formula

chain rule.

 (12)

Information:

 = The parameter gradient W respect

 to loss L

 = MSE partial derivative, i.e. 2 (Yi - Y’i)

 = The derivative of the Linear activation

 function, i.e. 1

 = The parameter gradient W respect to

 the y_in matrix, i.e. Z

c. Gradient Calculations in The Hidden

Layer

 Next, calculate the gradient of the parameter V to

Loss, with the chain rule formula as follows.

 (13)

Information:

 = The parameter gradient V with

 respect to loss L

 = Z parameter gradient to the matrix

 yini, i.e. weight value of Wj,i

 = derivative of the ReLU

 with respect to z_in, i.e.

 = The parameter gradient V with

 respect to z_in, i.e. nilai Xk

d. Gradient Calculations in The Convolution

Layer B

 Next calculate the gradient of the filter parameter

B for loss, using the following chain rule.

 (14)

Before calculating the gradient of filter B, first

calculate , using the chain rule formula, as

follows.

 (15)

Information:

 = The Gradient X matrixs with

 respect to loss L

 = The Gradient X matrixs respect

to z_inj, i.e. weights Vk,j

After , calculate the value of with the

following formula.

 (16)

Information:

 = Gradient feature map FB respect to

 Loss L.

 =Gradient X matrixs respect ti Loss L

 = derivative of the ReLU

 with respect to FB, i.e.

After is known, conduct a convolution between

and the RA1, RA2 and RA3 featuure to obtain

the gradient , following the formula

 (16)

Information:

 = The parameter Gradient Filter B

 respect ti Loss L.

 = Gradient feature map FB respect to

 Loss L

 RAc = Featuremap RA

e. Gradient Calculations in The Convolution

Layer A

 Finally, the gradient calculation of the filter

parameter A uses the chain rule formula.

 (17)

Before calculating the gradient of filter A, first

calculate , using the chain rule formula by cross-

correlating between and Filter Bi. Here's the

equation.

(18)

Information:

 = Gradient feature map RA respect to

 Loss L

 = Filter B1

 = Gradient feature FB respect to Loss L

After getting the . matrix. Next do the

calculation of the value of .

 (19)

Information:

 = Gradient feature map F respect to

 Loss L

 = Gradient feature map RA respect to

 Loss L

 = derivative of the ReLU

 with respect to FA, i.e.

After the value is known do the convolution

process between and the input image C to

produce the gradient . Here's the equation.

 (20)

Infotmation:

 = Gradient Filter A respect to loss L

 = Gradien feature map F respectto loss L

 C = input image

f. Parameter Update

 The weight update process will use Adam based

on the obtained gradient value. Adam is a first order

gradient based weight optimization method of

stochastic objective functions, based on the adaptive

estimation of low order moments, with

equations.

Information:

 = decay of momentum 1, beta1

 = decay of momentum 2, beta2

 = parameter gradien value

 = first vector moment, where = 0

 = second vector moment, where = 0

 = estimated bias-corrected vector

 from the first moment.

 = estimated bias-corrected vector

 from the second moment.

 α = learningrate, alpha

 = old weights value

 = new weights value

 = epsilon preventive of divider 0, 10-8

2.5. Selecting Actions with CNN

 The process of selecting actions with CNN has

several steps, the following is an overview of the

steps.

Figure 9. steps for selecting actions with CNN

 The process starts with feedforward on CNN

with current state input, the output of feedforward is

the Q-value for each action (0 and 1). Then the agent

will decide the action to be taken by comparing the

Q-value of all actions, the action with the largest Q-

value will be the selected action and then executed

in the flappy bird game. The following is an

illustration of the process of selecting action with

CNN.

Figure 10. Illustration of Action Selection with

CNN

2.6. Peformance Testing

Performance testing is done to measure the

performance of the algorithm applied and see the

effect of each change in the parameters of the

algorithm. the purpose of testing is to find the

optimal combination of parameters so that the

average number of smallest experiments needed in

the exploration process and the largest score that can

be obtained by the agent can be known. As a note in

the process of testing the position of a random pipe

and not set the same between one experiment with

another experiment. The following is the

performance testing scenario.

Table 1. Testing Scenario

Parameter Nilai

Learning Rate 0.1, 0.01, 0.001

Discount Rate 0.1, 0.5, 0.99

Ukuran Batch 8, 16, 32

Kondisi Henti 10, 15, 20

2.6.1. Learning Rate Testing

 In this test using three values, namely 0.001, 0.01

and 0.1, the other parameters are the discount rate of

0.99, batch size of 32 and stop conditions at a score

of 20. Experiments that fail to meet the stop

conditions are marked with a star (*) on the contents

of the table cell with the column number an

experimental exploration process.

Table 2. Learning Rate Testing Results

Number of

experiments
Score

Number of

experiments
Score

Number of

experiments
Score

1
323

experiments
892

*7420

experiments
11

*6279

experiments
4

2
222

experiments
1000

*7558

experiments
22

*7005

experiments
2

3
*4797

experiments
5

*4336

experiments
14

348

experiments
351

4
*5417

experiments
5

576

experiments
724

*4843

experiments
13

5
924

experiments
974

*4851

experiments
15

*6418

experiments
8

Avera

ge

2336,6

experiments
575,2

4948,2

experiments
157,2

4978,6

experiments
75,6

No

0,1 0,01 0,001

The test results show the use of the value of 0.001

has the best results where the exploration process is

completed with an average of 2336.6 experiments

and an average score of 575.2. In addition,

experiments that fail to meet stop conditions always

score poorly. This shows the use of a very small

learning rate increases the guarantee of the learning

process to find optimal results while a learning rate

that is too large will increase the likelihood of

learning outcomes not converging and giving poor

results [7].

2.6.2. Discount Rate Testing

 In this test using three values, namely 0.1, 0.5

and 0.9, for other parameters using a learning rate of

0.1, batch size 32 and stop conditions at a score of

20. Trials that fail to meet the stop conditions are

marked with a star (*) on the contents of the table

cell with the column number an experimental

exploration process.

Table 3. Discount Rate Testing Results

Number of

experiments
Score

Number of

experiments
Score

Number of

experiments
Score

1
*11203

experiments
1

*4342

experiments
4

323

experiments
892

2
*8422

experiments
0

*5717

experiments
12

222

experiments
1000

3
*9257

experiments
2

*4372

experiments
5

*4797

experiments
5

4
*9510

experiments
1

*4290

experiments
5

*5417

experiments
5

5
*11048

experiments
1

*4088

experiments
7

924

experiments
974

Avera

ge

9888

experiments
1

4561,8

experiments
6,6

2336,6

experiments
575,2

No

0,1 0,5 0,99

The test results show the use of 0.99 has the best

results where 3 out of 5 trials successfully met the

stop conditions with an average of 2336.6 trials and

an average score of 575.2. In addition, the

assumptions in the previous test occur, namely

experiments that fail to meet the stop conditions tend

to give a bad score. If seen as a whole, the use of a

smaller discount rate tends to give worse results, this

shows the use of a discount rate that is closer to 1

will give optimal results seen from the score

obtained by the agent [8].

2.6.3. Batch Size Testing

 In this test using three values, namely 8, 16 and

32, for other parameters using a learning rate of 0.1,

a discount rate of 0.99 and a stop condition at a

score of 20. Experiments that fail to meet the stop

conditions are marked with a star (*) on the contents

of the table cell with the column number an

experimental exploration process.

Table 4. Batch Size Testing Results

Number of

experiments
Score

Number of

experiments
Score

Number of

experiments
Score

1
*4187

experiments
0

873

experiments
83

323

experiments
892

2
*5968

experiments
6

1053

experiments
937

222

experiments
1000

3
*5244

experiments
7

*6580

experiments
6

*4797

experiments
5

4
*7513

experiments
3

*8478

experiments
0

*5417

experiments
5

5
*6378

experiments
21

*7069

experiments
13

924

experiments
974

Avera

ge

5858

experiments
7,4

4810,6

experiments
207,8

2336,6

experiments
575,2

No

8 16 32

The test results show the use of a value of 32 has the

best results, both seen from the average number of

experiments in the exploration process and the

scores obtained. The smaller the batch size used the

results obtained tend to get worse. In addition, in

experiment 1 with a batch size of 16 where the agent

managed to meet the stop conditions at 873 but the

scores obtained were quite far compared to other

experiments that managed to meet the stop

conditions, the results showed the batch size had an

effect on the stability of exploration process,

resulting in a decrease in the ability of the agent.

This is consistent with J Lin's research regarding the

relationship of batch size with the stability of the

learning process [9].

2.6.4. Stop Condition Testing

 In this test using three values, namely 10, 15 and

20, for other parameters using a learning rate of 0.1,

a discount rate of 0.99 batch size 32. Experiments

that fail to meet the stop conditions are marked with

a star (*) on the contents of the table cell.

Table 5. Stop Condition Testing Results

Number of

experiments
Score

Number of

experiments
Score

Number of

experiments
Score

1
76

experiments
11

202

experiments
1000

323

experiments
892

2
1014

experiments
2

701

experiments
61

222

experiments
1000

3
129

experiments
1

165

experiments
1000

*4797

experiments
5

4
1212

experiments
20

*4914

experiments
5

*5417

experiments
5

5
373

experiments
21

*7408

experiments
8

924

experiments
974

Avera

ge

560,8

experiments
11

2678

experiments
414,8

2336,6

experiments
575,2

No

10 15 20

The test results show the use of stop conditions 10

showed the best results with an average of 560.8

times the experiment and always managed to meet

the stop conditions. However, the stop condition 10

actually shows the worst results when viewed from

the score obtained, which is an average of 11. It

shows that the stop conditions that are too early can

accelerate the exploration process, but can result in

the score that is not too good. So that the selection of

stop conditions in the exploration process will

greatly affect the ability of agents to get scores when

playing games [11].

3. CLOSING
In this section contains the results of the study,

namely conclusions and suggestions.

3.1. Conclusion

 Based on the results of research conducted on the

implementation of the Q-Learning algorithm

combined with CNN for the case of an agent playing

a flappy bird, the average number of experiments

needed to complete the exploration process is 2336.6

experiments and the average score obtained is 575 ,

2. However, the exploration process is inconsistent

where the agent does not always succeed in meeting

the stop conditions and the large number of

experiments during the exploration process does not

always be directly proportional to the score obtained

by the agent during the exploitation process.

3.2. Suggestion

 In this study there are many deficiencies that

occur. As for suggestions that can be given for

development in further research to be better,

including:

1. Adding a weight intializayion method.

2. Reserve weights used as checkpoints when the

exploration process is not going well.

3. Try to compare another methods with CNN to

find out the best method in the case of flappy

bird game.

BIBLIOGRAPHY

[1] M. Ebeling-Rump, M. Kao dan Z. Hervieux-

Moore, “Applying Q-Learning to Flappy Bird,”

Department Of Mathematics And Statistics,

Queen’s University.

[2] T. M. Buffalo, “Flappy Bird World Record,”

Tech Marketing Buffalo, 27 February 2014.

[Online]. Available:

https://techmarketingbuffalo.com/flappy-bird-

world-record/.

[3] R. S. Sutton dan A. G. Barto, Reinforcement

Learning An Introduction 2nd Edition,

Cambridge: The MIT press, 2018.

[4] V. Mnih, K. Kavukcuoglu dan et al, “Playing

atari with deep reinforcement learning,” arXiv

preprint arXiv:1312.5602, 2013.

[5] P. A. Rao, B. N. Kumar dan et al, “Distributed

Deep Reinforcement Learning using

TensorFlow,” dalam 2017 International

Conference on Current Trends in Computer,

Electrical, Electronics and Communication

(CTCEEC), IEEE, 2017, pp. 171-174.

[6] G. Bradski dan A. Kaehler, Learning OpenCV,

Ebastopol: O'Reilly, 2008.

[7] S. Haykin, Neural Networks and Learning

Machines, New York: Prentice Hall, 2009.

[8] C. J. Watkins dan P. Dayan, “Q-Learning,”

Machine Learning, vol. 8, no. 3-4, pp. 279-292,

1992.

[9] R. Liu dan J. Zou, “The Effects of Memory

Replay in Reinforcement Learning,” arXiv

preprint arXiv:1710.06574v1, 2017.

[10] Adriansyah dan E. Rainarli, “Implementasi Q-

Learning dan Backpropagation pada Agen yang

Memainkan permainan Flappy Bird,” JNTETI,

vol. 6, no. 1, pp. 1-7, 2017.

