BABI

PENDAHULUAN

1.1 Latar Belakang

Pertumbuhan industri di Indonesia setiap tahun mengalami kenaikan, hal ini di dilaporkan Badan Pusat Statistik (BPS) bahwa industri manufaktur besar dan sedang (IBS) tahun 2017 di indonesia naik sebesar 4,74 persen dibanding tahun sebelumnya. Pembangunan pabrik tentunya membutuhkan lahan yang luas untuk membangun berbagai sarana dan prasarana industri dalam skala besar, hal ini tentunya dapat berimbas pada perubahan tata guna lahan sehingga dapat menurunkan daya resap air ke dalam tanah.

Sehingga perlu sistem drainase atau pengeringan lahan yang optimal untuk mengurangi resiko terjadinya banjir pada kawasan pabrik itu sendiri. Mengkaji atau meninjau kembali dari desain sistem drainase cukuplah penting, guna mencegah terjadinya banjir mengingat pengaruh/kerugian baik ekonomi, sosial, produktivitas dll yang ditimbulkan bernilai tinggi.

Adapun permasalahan dalam perencanaan desain drainase yang sering terjadi adalah penentuan tipe, dimensi dan bahan sesuai dengan kebutuhan debit dan kondisi lapangan. Hal ini mengingat tipe, dimensi dan bahan ada pengaruhnya pada aliran air.

Perencanaan saluran drainase dengan model penampang persegi panjang banyak dipilih untuk talang jarigan irigasi di daerah perkotaan besar. Drainase dengan peampang segiempat ini dipilih karena memiliki dua kelebihan, yaitu memiliki nilai estetika dan cocok untuk lahan yang terbatas.(Rina Vitdiawati 2015)

Faktor lain yang menyebabkan tidak optimalnya sistem drainase ialah dampak dari pasang surut aliran sungai, terlebih jika lokasi kawasan pabrik berada di sekitar sungai dan kondisi *outfall* drainase mengarah langsung ke sungai. Dikarenakan

aliran *outfall* akan terhambat oleh tingginya muka air sungai dan menyebabkan penumpukan air.

Oleh karena itu tentunya permodelan sistem drainase sangatlah diperlukan untuk mempermudah dalam menganalisis setiap saluran. Salah satu software yang dapat mensimulasikan dan menganalisis suatu model mengenai kuantitas dan kualitas air pada drainase adalah EPA SWMM yang sekarang berlaku versi 5.1.

Dalam menganalisis dan memodelkan drainase, penulis menggunakan *software* EPA SWMM 5.1 untuk mensimulasikan hidrologi, limpasan dan hidraulik drainase terbaik sesuai aliran rencana. Selain itu, penulis menggunakan bantuan *software* HEC-RAS 5.0.6 sebagai pemodelan debit banjir pada sungai Rejoso karena SWMM tidak mendukung input debit secara langsung.

Dalam skripsi ini penulis akan merencanakan desain terbaik sekaligus menganalisis desain menggunakan *software* SWMM. Studi lokasi yang ditinjau ialah industri gula pertama di kabupaten Blitar, yaitu PT Rejoso Manis Indo (RMI) yang merupakan salah satu industri skala besar di bidang produksi gula tebu di Indonesia yang mulai dibangun pada tahun 2017 lalu. Luas area industri ini ±73 Ha milik RMI yang direncanakan dapat memenuhi kapasitas produksi gula hingga 10.000 ton per hari.

Lokasi dari industri gula Rejoso ini terletak di Jalan Raya Rejoso desa Rejoso kecamatan Binangun kabupaten Blitar provinsi Jawa Timur. Industri ini juga bersebelahan dengan sungai Rejoso yang menjadi saluran utama pembuangan air. Foto dari survey kondisi di kawasan pabrik RMI oktober 2017 (gambar I.1) dan kondisi sungai Rejoso (gambar I.2) pada oktober 2017 yang telah dilakukan oleh pihak RMI.

Gambar I. 1 Survey Kondisi Pabrik RMI Sumber: Pihak RMI

Gambar I. 2 Survey Kondisi Sungai Rejoso Sumber: Pihak RMI

1.2 Maksud dan Tujuan

Adapun maksud dan tujuan dari penulisan tugas akhir ini adalah :

- a. Membuktikan bahwa tipe saluran persegi panjang cocok digunakan di setiap saluran terbuka kawasan pabrik RMI.
- b. Kajian untuk memberikan alternatif desain sistem drainase terbaik.
- c. Memberikan referensi penggunaan SWMM 5.1.

1.3 Pembatasan Masalah

Adapun pembahasan dari penyusunan tugas akhir ini adalah:

- a. Karya tulis ini hanya membahas drainase air hujan.
- b. Studi lapangan yang ditinjau hanya pada kawasan industri gula PT Rejoso Manis Indo (RMI) dan sekitarnya yang berpengaruh pada sistem drainase kawasan pabrik.
- c. *Catchment area* yang di tinjau adalah seluruh kawasan yang temasuk pabrik gula RMI.
- d. Limpasan berasal dari atap bangunan, lahan parkir, jalan akses dan lahan terbuka lainnya.
- e. Analisa hanya meninjau kapasitas rencana sistem drainase dan dampak pasang surut sungai Rejoso.
- f. Data hujan yang digunakan adalah tahun 2008-2017

1.4 Hipotesis

Adapun hipotesis dalam karya ilmiah ini ialah penampang saluran persegi dapat mengalirkan air dengan optimal.

1.5 Manfaat Penelitian

Adapun manfaat yang didapat dari penelitian ini ialah:

a. Secara Subyektif

Sebagai karya ilmiah untuk mendapatkan gelar sarjana dan memenuhi syarat kelulusan pada Program Studi Teknik Sipil Universitas Komputer Indonesia.

b. Secara Obyektif

Sebagai salah satu referensi dalam perencanaan desain drainase untuk area industri skala menengah hingga besar yang letaknya berdekatan dengan sungai.

1.6 Sistematika Pembahasan Masalah

Sistematika pembahasan masalah pada penulisan tugas akhir ini terbagi atas lima bab yang terdiri dari :

BAB I PENDAHULUAN

Pada bab ini menyajikan penjelasan umum mengenai penyusunan tugas akhir, yaitu latar belakang, maksud dan tujuan, pembatasan maslah, manfaat penelitian dan sistematika penulisan tugas akhir.

BAB II STUDI LITERATUR

Pada bab ini menyajikan kumpulan studi literatur yang digunakan berkaitan dengan penulisan karya ilmiah ini. Bab ini berisi mengenai teori-teori yang dikemukakan oleh para ahli serta panduan drainase dan perhitungan debit banjir rencana sesuai PERMEN PU No.12/PRT/M/2014 dan SNI 2415 tahun 2016 yang digunakan dalam analisis perencanaan dan pemodelan drainase.

BAB III METODE PENELITIAN

Pada bab ini menyajikan metode penelitian yang digunakan dalam karya tulis ini. Bab ini menjelaskan metode pengumpulan dan interpretasi data yang dilakukan dan membuat kerangka acuan perencanaan desain.

BAB IV HASIL DAN PEMBAHASAN

Pada bab ini menyajikan perhitungan-perhitungan hidrolis dan pemodelan limpasan menggunakan *software* EPA SWMM versi 5.1. Serta *software* Hec-Ras untuk memodelkan dampak perubahan tinggi muka air yang terjadi pada sungai Rejoso pada *outfall* drainase kawasan pabrik akibat yang mungkin terjadi dalam kurun waktu tertentu.

BAB V KESIMPULAN DAN SARAN

Pada bab ini memuat kesimpulan berdasarkan hasil penelitian yang diperoleh serta saran dari penulis untuk pengembangan penelitian selanjutnya yang lebih sempurna.

1.7 Daftar Jurnal dan Penalitian Ilmiah

Berikut ini merupakan daftar jurnal yang digunakan sebagai referensi penulisan skripsi berjudul "Kajian Sistem Drainase Pada Kawasan Pabrik Menggunakan EPA SWMM 5.1"

No	Nama	Judul	Tujuan	Metode	Kesimpulan
	Roby Aulia	Analisa Debit	Untuk menguji	Penelitian ini merupakan	Nilai selisih discharge error
1	Syuhada ^{(1),}	Banjir	keandalan program	penelitian deskriptif dengan	(DE) sebesar 2,593% dan
	Yohanna Lilis	Menggunakan	bantu SWMM 5.0	pendekatan kualitatif untuk	2,268% pada kala ulang 5
	Handayani ^{(2) dan}	EPA SWMM di	terhadap debit banjir	berfokus pada perbandingan	dan 25 tahun menunjukan
	Bambang	sub DAS Kampar	di sub DAS Kampar	hasil antara SWMM dengan	bahwa selisih debit
	Sujatmoko ^{(3).}	Kiri (Studi kasus :	Kiri dan	HEC-HMS	perhitungan dengan debit
		desa Lipat Kain,	membandingkan hasil		terukur dikategorikan baik
		Kampar Kiri)	output debit program		karena DE <5% [ada kedua
			bantu EPA SWMM		software tsb.
			dengan output debit		
			HEC-HMS		
	Lina Dwi	Perencanaan	Perencanaan drainase	Metode yang digunakan survey	Kapasitas penampang long
2	Damayanti ⁽¹⁾ ,	Sistem Drainase	meliputi long storage,	lapangan, pengumpulan data	storage memiliki volume
	Hane Syafarini ⁽²⁾ ,	Wilayah Tawang	rumah pompa, tanggul	sekunder, analisis hidrologi	sebesar 72720 m³ pada
	Suseno Darsono	Sari Dan Tawang	dan pintu air.	dan hidrolika serta	Semarang Indah, 21876 m ³
	⁽³⁾ dan	Mas Semarang		perencanaan teknis berupa	pada Madukoro dan 45177
	Sugiyanto ⁽⁴⁾	Barat		simulasi long storage tanggul,	m ³ pada Tawang Sari.
				pompa dan pintu air	Artinya kapasitas volume

					rencana lebih besar dari pada volume <i>long storage</i> yang dibutuhkan.
No	Nama	Judul	Tujuan	Metode	Kesimpulan
	Mega Gusti Heka	Perencanaan	Merencanakan	Penelitian ini merupakan	Nilai sendimentasi yang
		Dimensi saluran	dimensi saluran	penelitian deskriptif dengan	didapatkan yaitu
		drainase kawasan	drainase pada	pendekatan kualitatif yang	0,1081(Kg/tahun)/m. Debit
3		pabrik PT.Sinar	kawasan pabrik PT.	mengacu pada keadaan	air untuk saluran primer
3		Alam Permai	Sinar Alam Permai	sebenarnya di lapangan.	sebesar 0,1146 m ³ /s dan
		Kabupaten			saluran sekunder sebesar
		Banyuasin Sumatra			$0.0913 \text{ m}^3/\text{s}$
		selatan			
	Denik S.	Perencanaan	Menganalisis	Penelitian ini merupakan	Perlu adanya penambahan
4	Krisnayanti ^{(1),}	Drainase kota Seba	genangan akibat curah	penelitian kuantitatif dengan	dimensi pada saluran
	Elia		hujan tidak	melakukan studi kasus pada	eksisting di (Trans seba –
	Hunggurami ^{(2) dan}		tersalurkan ke sungai	lokasi yang ditinjau.	Menia 7a) dengan luas
	Kristina N.		secara benar		saluran sebesar 20%.
	Dhima-Wea ⁽³⁾				

No	Nama	Judul	Tujuan	Metode	Kesimpulan
5	Jorge Gionás ^{(1),}	A New Application	Untuk menjelaskan	Menjelaskan pembaruan	SWMM versi 5.1 lebih baik
	Larry	Manual for the	panduan penggunaan,	aplikasi dan perbandingan dari	dari sebelumnya, terlihat dari
	A.Roesner ^{(2),}	Storm Water	fungsi dan manfaat	sebelumnya	berbagai fitur baru dan
	Lewis	Management	SWMM		tampilan yang di rework
	A.Rossman ^{(3) dan}	Model (SWMM)			
	jennifer Davis ⁽⁴⁾	ver. 5.1			
	Malinda	Analisis Debit dan	Untruk mendapatkan	Metode penelitian ini	Tinggi muka air dari hasil
	Kamase ^{(1),}	Tinggi Muka Air	debit banjir pada	menggunakan analisis	model HEC-RAS terhadap
	Lyany Amelia	Sungai Todano di	sungai Tondano titik	software HEC-HMS dan HEC-	debit banjir kala ulang 5, 25,
6	Hendratta ^{(2), dan}	Jembatan desa	jembatan penghubung	RAS sebagai penentuan debit	50, 100 dan 200 tahun tidak
	Jeffry Swingly F.	Kuwil kecamatan	Desa Kuwil	banjir dan limpasan pada titik	mengakibatkan luapan banjir
	Sumarauw ⁽³⁾	Kalawat	kecamatan Kalawat.	tinjau	pada elevasi di titik jembatan
					yaitu pada sta 0+00 di
					elevasi 65,85
7	Omar	Arahan dan strategi	1) Mengidentifikasi	Kajian model pengembangan	Pembagian cluster dibagi
	Brahmanto ^{(1),}	pengembangan	hierarki wilayah	wilayah dengan pendekatan	atas 3 <i>cluster</i> yaitu : <i>cluster</i> 1
	R. P. Sitorus	kawasan perdesaan	dalam mendukung	agropolitan.	berupa komoditas tanaman
	Santun ^{(2),dan}	dengan pendekatan	pengembangan		pangan, cluster 2 komoditas

	Hadi, Setia ^{(3),}	agropolitan di	agropolitan di kab.		perkebunan dan cluster 3
		kabupaten Blitar	Blitar,		merupakan komoditas
			2) Mengidentifikasi		pertanian lahan kering
			tipologi wilayah		
			masing-masing		
			kecamatan beserta		
			komoditas unggulan.		
	Vitta Pratiwi ^{(1) dan}	Analisis Penerapan	Untuk menjaga	Metode penelitian ini	- Potensi air yang dapat
	Endang	Metode Rain	ketersediaan air tanah	menggunakan keseimbangan	dipanen ialah sebesar
	Permana ⁽²⁾	Harvesting Pada	dan keseimbangan	dengan neraca air untuk	173.983 liter pertahun
		Kawasan	siklus hidrologi.	menhitung kebutuhan serta	dari curah hujan 2.929
8		Perumahan G-		ketersediaan air pada studi	mm/tahun
		Land Padalarang		lokasi	- Dari neraca air dapat
		Untuk Menjaga			mengurang penggunaan
		Ketersediaan Air			air tanah sebesar 52% dari
		Tanah			kebutuhan total.