# APPLICATION METHOD FAILURE MODE AND EFFECT ANALYSIS IN SYSTEM PROJECT RISK MANAGEMENT IN CV BELLVANIA JAYA MANDIRI

Solita Saragih<sup>1</sup>, Sufa'atin<sup>2</sup>

 <sup>1,2</sup> Teknik Informatika-Universitas Komputer Indonesia Jl.Dipatiukur 112-116, Bandung 40132, Indonesia.
 E-mail : solitasaragih@gmail.com<sup>1</sup>, sufaatin@email.unikom.ac.id2<sup>2</sup>

# ABSTRACT

#### CV.BELLVANIA JAYA MANDIRI is

companies operating in the field of construction. Based on interviews that have been done explain that the implementation of the project there is a mismatch and planning between project project implementation. As happened in the project to improve Ex.Toilet, Mushola and Ruang Sack Building Dahlan II. In the implementation of this project, there was a delay in the first week of the demolition work. The planning explained that the demolition work had been completed in the first week, but in the work of dismantling the cellessay in week 2. This delay causes the cost to be inflated that is not in accordance with rab, because the company must increase the working hours of each worker. The disruption of security in the project location caused the project to suffer losses.of the problems described above it is necessary to project risk management system in CV.Bellvania Jaya Mandiri. This system helps the project run according to plan. Knowing the critical path of work using the Critical Path Method, helping to make rab using the Earned Value Method, helping to manage risk using the Failre Mode and Effect Analysis method.

Based on the results of tests that have been carried out, the conclusion is that the project's risk management system can assist in scheduling, rab, and identifying risks.

**Keywords :** Risk Management, *Critical Path Method, Earned Value, Failure Mode and Effect Analysis,* 

## **1. INTRODUCTION**

CV.BELLVANIA JAYA MANDIRI is a company engaged in construction located in East Jakarta.

Based on the results of interviews conducted with Mr. Edy Maruli Jaya as ur director explained that in implementing projects there are often inconsistencies between project planning and project work. As happened in the project Ex Repair Toilet and Building Room Snack Room Dahla II Building. In the course of this project, there was a delay. In the planning explained that in the first week of dismantling work was completed, but in the implementation of the demolition work completed in week 2. The delay was caused by the supervisors asking that the demolition work be delayed 5 days in order to maintain teaching and learning activities of students at school. This delay

requires the company to increase the work hours of each worker so that the demolition work can be completed quickly. Adding hours to the working room results in a mismatch between the budget plan and the implementation. This results in losses for the company. The above problems occur because of the risk of security disturbances at project locations not identified previously.

Based on the problems outlined above, a solution is needed to help the person in charge of scheduling so that the critical work can be identified, and can help arrange the rab to fit the current needs, and help in processing and identifying risks. occur in project work. Therefore a system will be built which can be accessed wherever the user is, namely the Project Risk Management System in CV. Belania. It is expected that this system can help the person in charge of overcoming the project's problems in CV. ELLVANIA JAYA MANDIRI.

# 2. RESEARCH CONTENTS

2.1 Research Methodology

The following is the methodology used in this study



**Research Methodology** 

# 2.2 Project Planning Analysis

Project planning analysis is filled with scheduling analysis, cost analysis, and identification of risks that occur in the Ex Toilet and Mushola Room Snack Room Building project, Dahlan Building II.

#### 2.2.1 An Analysis of Scheduling (*Critical* Path Method)

*Critical path method* is one of the scheduling methods used to find the fastest critical path of every work or project activity [1]

| No | Uraian Pekerjaan                                | Durasi | Kode       | Kode        |
|----|-------------------------------------------------|--------|------------|-------------|
|    |                                                 | (Hari) | Pengerjaan | Pendahuluan |
| 1  | Pekerjaan Pendahuluan                           | 7 Hari | А          | -           |
| 2  | Pekerjaan Bongkaran                             | 5 Hari | В          | -           |
| 3  | Pekerjaan Pasang lantai,<br>keramik dan dinding | 7 Hari | С          | A,B         |
| 4  | Pekerjaan Pasang Pintu Kusen                    | 3 Hari | D          | С           |
| 5  | Pekerjaan Pasang Jendela<br>Kusen               | 4 Hari | E          | С           |
| 6  | Pekerjaan Atap                                  | 5 Hari | F          | D,E         |
| 7  | Pekerjaan Platfond                              | 3 Hari | G          | F           |
| 8  | Pengecetan                                      | 2 Hari | Н          | G           |
| 9  | Instalasi Listrik                               | 3 Hari | Ι          | G           |
| 10 | Pekerjaan Pembersihan                           | 1 Hari | J          | H,I         |

Based on the table of activities of the Ex Toilet and Mushroom Room Improvement Project for Dahlan II Building Snack Room, it can be illustrated in the network diagram.



Figure 3 Diagram of CPM Networks with Critical Paths

## 2.2.2 Risk Management Analysis (*Failure Mode and Effet Analysis*)

FMEA was formalized in 1949 by the United States armed forces with the introduction of MIL-P 1629. Procedure for carrying out the mode of failure and criticality analysis. The aim is to classify failures "according to their impact on the mission of success and safety of personnel / equipment. Then adopted in the Apollo space program to reduce the risk due to the size of the sampe too small the use of FMEA gained momentum during the 1960s FMEA can identify and deal with security issues before there is potential for disaster [2].

FMEA is a method designed for:

| No | Uraian Pekerjaan                  | Durasi | Kode       | Kode        | Risk |
|----|-----------------------------------|--------|------------|-------------|------|
|    |                                   | (Hari) | Pengerjaan | Pendahuluan | S    |
| 1  | Pekerjaan Pendahuluan             | 7 Hari | А          | -           |      |
| 2  | Pekerjaan Bongkaran               | 5 Hari | В          | -           |      |
| 3  | Pekerjaan Pasang lantai,          | 7 Hari | С          | A,B         |      |
|    | Kerannik dan dinding              |        |            |             | Step |
| 4  | Pekerjaan Pasang Pintu Kusen      | 3 Hari | D          | С           | num  |
| 5  | Pekerjaan Pasang Jendela<br>Kusen | 4 Hari | E          | С           |      |
| 6  | Pekerjaan Atap                    | 5 Hari | F          | D,E         |      |
| 7  | Pekerjaan Platfond                | 3 Hari | G          | F           |      |
| 8  | Pengecetan                        | 2 Hari | Н          | G           |      |
| 9  | Instalasi Listrik                 | 3 Hari | Ι          | G           |      |
| 10 | Pekerjaan Pembersihan             | 1 Hari | J          | H,I         |      |

Using forward and backward calculations to determine the time to complete project work using the CPM method [5].

Here are the results of the analysis of the cpm calculation





1. Identify and fully understand the modes of potential failure and the causes and effects of failure. on the system or end users for certain products or processes .

2. Assess the risks associated with identified failures. modes, effects, and causes and prioritize problem corrective actions. [7]

#### **Table 3 Severity Scale**

| Effect        | Kriteria Kejadian                 | Skala |
|---------------|-----------------------------------|-------|
| Sangat Tinggi | Efek kegagalan yang sangat parah  | 5     |
| Tinggi        | Efek kegagalan yang parah         | 4     |
| Sedang        | Efek kegagalan yang jarang parah  | 3     |
| Kecil         | Efek kegagalan yang sedikit parah | 2     |
| Sangat Kecil  | Efek kegagalan yang tidak parah   | 1     |

Based on the FMEA analysis and the results of an interview with Mr. Edy Maruli Jaya explaining the level of events for the risks that occur as follows:

# Table 4 Occurrence scale

| Effect                | Kriteria Kejadian                                | Skala |
|-----------------------|--------------------------------------------------|-------|
| Sangat sering terjadi | Kegagalan yang tidak dapat                       |       |
|                       | dihindarkan                                      | 5     |
| Sering terjadi        | Kegagalan yang sering terjadi berulang-<br>ulang | 4     |
| Biasa terjadi         | Kegagalan yang biasa terjadi                     | 3     |
| Jarang terjadi        | Kegagalan yang terjadi beberapa kali<br>saja     | 2     |
| Sangat jarang terjadi | Kegagalan yang sangat jarang terjadi             | 1     |

## **Table 5 Detection Scale**

| Effect            | Kriteria Kejadian                                                 | Skala |
|-------------------|-------------------------------------------------------------------|-------|
| Tidak terdeteksi  | Kemungkinan kegagalan terdeteksi<br>lebih awal : tidak terdeteksi | 5     |
| Jarang terdeteksi | Kemungkinan kegagalan terdeteksi<br>lebih awal : sangat rendah    | 4     |
| Biasa terdeteksi  | Kemungkinan kegagalan terdeteksi<br>lebih awal : rendah           | 3     |
| Terdeteksi        | Kemungkinan kegagalan terdeteksi<br>lebih awal : tinggi           | 2     |
| Sangat terdeteksi | Kemungkinan kegagalan terdeteksi<br>lebih awal : sangat tinggi    | 1     |

|    | Risiko                                | Kode       |          |           | Detecti |     |
|----|---------------------------------------|------------|----------|-----------|---------|-----|
| No |                                       | Risik<br>o | Severity | Occurance | on      | RPN |
| 1  | Kehilangan alat dan<br>bahan          | R1         | 3        | 2         | 4       | 24  |
| 2  | Kerusakan Alat                        | R2         | 3        | 3         | 3       | 27  |
| 3  | Keterlambatan bahan<br>material       | R3         | 4        | 4         | 4       | 64  |
| 4  | Cuaca yang tidak<br>dapat diprediksi  | R4         | 4        | 4         | 4       | 64  |
| 5  | Terjadi bencana alam                  | R5         | 5        | 5         | 2       | 50  |
| 6  | Gangguan Keamanan<br>di lokasi proyek | R6         | 4        | 3         | 4       | 48  |
| 7  | Kenaikan harga<br>material            | <b>R</b> 7 | 3        | 3         | 4       | 36  |
| 8  | Pekerja Sakit                         | R8         | 4        | 4         | 4       | 64  |
| 9  | Penanggung jawab<br>berhalangan hadir | R9         | 3        | 3         | 4       | 48  |
| 10 | Kecelakaan tenaga<br>kerja            | R10        | 4        | 5         | 4       | 60  |
| 11 | Pengulangan<br>pekerjaan              | R11        | 5        | 5         | 2       | 50  |

Based on the FMEA analysis and the results of an interview with Mr. Edy Maruli Jaya explained the level of detection for risks that occur as follows:

# **RPN calculation : RPN =** *Severity x Occurance x Detection*

#### = **48.72**

After getting the total RPN value, then the average RPN is obtained as the calculation above. The average RPN value is 48.72. Then the information obtained is the risks that produce values above the average value of 48.72 is a list of risks that have a high priority level is kois who has a risk code **R4**, **R5**, **R10**, **R11** so that appropriate mitigation or treatment is needed to reduce the level riisko's high priority. The following are mitigations that can reduce high levels of risk.

# Table 6 Classification of Risk Rates

| No | Risiko            | Kode   | Level  | Penanganan Risiko                   |
|----|-------------------|--------|--------|-------------------------------------|
|    |                   | Risiko | Risiko | -                                   |
| 1  | Kehilangan alat   | RI     | Rendah | Mencari tempat penyewaan            |
|    | dan babans        |        |        | alat lain dengan                    |
|    | dan banans        |        |        | nachandingan harm yang              |
|    |                   |        |        | sidele heleb lebib desi             |
|    |                   |        |        | tidak bölen lebin dan               |
|    |                   |        |        | anggaran.                           |
| 2  | Kerusakan Alat    | R2     | Rendah | Retur segera barang yang            |
|    |                   |        |        | disewa agar digantihkan             |
|    |                   |        |        | dengan barang yang                  |
|    |                   |        |        | berfungsi.                          |
| 3  | Keterlambatan     | R3     | Tinggi | Melakukan komunikasi yang           |
|    | bahan material    |        |        | baik degan supplier                 |
| 4  | Cuaca yang tidak  | R4     | Tinggi | Mengikuti laporan cuaca             |
|    | dapat diprediksi  |        |        | yang akurat, termasuk cuaca         |
|    |                   |        |        | pada pelaksanaan proyek.            |
| 5  | Terjadi bencana   | R5     | Sedang | Melakukan perlindungan              |
|    | alam              |        |        | keamanan saat proyek                |
| 6  | Gangguan          | R6     | Rendah | Melakukan perlindungan              |
|    | Keamanan di       |        |        | keamanan                            |
|    | lokasi proyek     |        |        |                                     |
| 7  | Kenaikan harga    | R7     | Rendah | Melakukan kesepakatan               |
|    | material          |        |        | harga kepada supplier               |
| 8  | Pekerja Sakit     | RS     | Tinggi | Meminta pekerja untuk               |
|    | 1                 |        | -      | menjaga kesehatan                   |
| 9  | Penanggung        | R9     | Rendah | Team Leader akan                    |
|    | jawab             |        |        | memneringatkan Tenaga               |
|    | herhalangan hadir |        |        | Ahli untuk datang selama            |
|    | Constantigan naun |        |        | jadwal wang sudah                   |
|    |                   |        |        | jauwai yang suuan<br>ditentukan     |
| 10 |                   |        |        | unentukan<br>Menhadhan andar barada |
| 10 | riecelakaan       | K10    | bedang | Memoerikan arahan kepada            |
|    | tenaga kerja      |        |        | pekerja agar mengutamakan           |

# **2.3** Analysis of Project Cost Control (*Earned Value Management*)

The project control analysis contains steps to assist in evaluating the project by controlling project costs and time. Project control uses the *Earned Value Management* method [3]

## 2.3.1Calculation of Job Weight

.

To be able to do a project evaluation, the first thing to do is to calculate the weight of the work.

# Table 7 Calculation of Job Weight

| N  | Wi-t                                            | IT              | D-1-4 (0/) |
|----|-------------------------------------------------|-----------------|------------|
| No | Kegiatan                                        | Harga Pekerjaan | Bobot (%)  |
| 1  | Pekerjaan Pendahuluan                           | Rp. 14.416.380  | 7,53%      |
| 2  | Pekerjaan Bongkaran                             | Rp. 11.134.816  | 5,82%      |
| 3  | Pekerjaan Pasang lantai,<br>keramik dan dinding | Rp. 63.380.020  | 33,1 %     |
| 4  | Pekerjaan Pasang Pintu Kusen                    | Rp. 11.550.000  | 6,03%      |
| 5  | Pekerjaan Pasang Jendela<br>Kusen               | Rp. 10.890.550  | 5,69 %     |
| 6  | Pekerjaan Atap                                  | Rp. 45.999.030  | 24,02 %    |
| 7  | Pekerjaan Platfond                              | Rp. 15.939.000  | 8,32 %     |
| 8  | Pengecetan                                      | Rp. 13.167.000  | 6,88%      |
| 9  | Instalasi Listrik                               | Rp. 4.620.000   | 2,41%      |
| 10 | Pekerjaan Pembersihan                           | Rp. 384.604     | 0,20 %     |
|    | Total                                           | Rp. 191.481.400 | 100 %      |

# 2.3.2 Project Evaluation Analysis

# Table 8 Work Weight Plans

| Daviada        |                                      | B       | obot      |
|----------------|--------------------------------------|---------|-----------|
| renode         | Uraian Pekerjaan                     | Rencana | Total     |
| Minggu         | Pekerjaan Pendahuluan                | 7,53%   | 12 25 %   |
| 1              | Pekerjaan Bongkaran                  | 5,82%   | 13,35 /0  |
| Minggu         | Pekerjaan Pasang Lantai, Keramik dan |         | 22 10/2   |
| Π              | Dinding                              | 33,1%   | 55,170    |
| Minggu         | Pekerjaan Pasang Pintu Kusen         | 6,03%   |           |
|                | Pekerjaan Pasang Jendela Kusen       | 5,69 %  | 23,73 %   |
| 111            | Pekerjaan Atap                       | 12,01 % |           |
| Pekerjaan Atap |                                      | 12,01%  |           |
| Minggu         | Pekerjaan Platfond                   | 8,32%   | 20 /15 0/ |
| IV             | Pekerjaan Pengecetan                 | 6,88 %  | 20,413 /0 |
|                | Instalasi Listrik                    | 1,205 % |           |
| Minggu         | Instalasi Listrik                    | 1 /05 % |           |
| V              | Pekerjaan Pembersihan                | 0,20 %  | 1,403 70  |

# Table 9 Weight of Project ImplementationProgress

| Poriodo   |                          |             | Bobot    | Bobot       |
|-----------|--------------------------|-------------|----------|-------------|
| renoue    | Uraian Pekerjaan         | Bobot       | Rencana  | Pelaksanaan |
| Minggu 1  | Pekerjaan Pendahuluan    | 7,53%       | 13.35%   | 100%        |
|           | Pekerjaan Bongkaran      | 5,82%       | 10,00 /0 |             |
| Minggu II | Pekerjaan Pasang Lantai, | 33,1% 33,1% |          | 100%        |
|           | Keramik dan Dinding      |             |          |             |
|           | Pekerjaan Pasang Pintu   |             |          |             |
|           | Kusen                    | 6,03%       |          |             |
| Minggu    | Pekerjaan Pasang Jendela |             | 23 73 %  | 100%        |
| III       | Kusen                    | 5,69 %      | 23,1370  | 10070       |
|           |                          | 12,01       |          |             |
|           | Pekerjaan Atap           | %           |          |             |
| Minggu    | Pekerjaan Atap           | 12,01%      | 28,415 % | 100%        |

# Table 10 Recapitulation of Earned Value Management Calculations

|        | Anali       | sis Varian        | Analisis  | Kinerja   | Analis  | is Estimasi |
|--------|-------------|-------------------|-----------|-----------|---------|-------------|
| Minggu | Waktu       |                   |           |           | Waktu   |             |
|        | SV          | Biaya CV          | Waktu SPI | Biaya CPI | ETC     | Biaya EAC   |
| Minggu | חת          | Rp.               | 1.00      | 1 77      |         | Rp.         |
| ke l   | KP.0        | 11.146.386        | 1,00      | 1,//      | 30 Hari | 108.181.581 |
| Minggu | <b>PD</b> O | Rp                | 1.00      | 0.84      |         | Rp.         |
| Ke 2   | Kr.v        | 11.694.493        | 1,00      | 0,04      | 30 Hari | 226.812.194 |
| Minggu | חמק         |                   | 1.00      | 0.00      |         | Rp.         |
| ke 3   | Kr.0        | Rp464             | 1,00      | 0,33      | 30 Hari | 191.483.355 |
| Minggu | חמק         |                   | 1.00      | 1.00      |         | Rp.         |
| ke 4   | IXF.U       | <b>R</b> p. 1.439 | 1,00      | 1,00      | 30 Hari | 191.476.335 |
| Minggu | <b>PD</b> O |                   | 1.00      | 1.00      |         | Rp.         |
| ke 5   | IXF.U       | Rp. 1.316         | 1,00      | 1,00      | 30 Hari | 191.387.734 |

# 2.5 Analysis Basis Data

Database analysis is a stage of analysis to describe the desired system in the form of relations between entities involved in the



# Figure 4 *Entity Relational Diagram* Table 11 Description of Entity Attributes On ERD

| No | Nama        | Nama Atribut                     |
|----|-------------|----------------------------------|
|    | Entitas     |                                  |
| 1  | Pengguna    | id, nama, username, email,       |
|    |             | no_telp, password, jabatan       |
| 2  | Resiko      | id, risiko, proyek_id,           |
|    |             | skala_kejadian, skala_deteksi,   |
|    |             | skala_keparahan, rpn, solusi.    |
| 3  | Pelaksanaan | id, proyek_id, minggu_ke,        |
|    | Proyek      | bobot, actual, biaya, catatan    |
| 4  | Proyek      | id, nama, alamat, tgl_mulai,     |
|    |             | tgl_selesai, team_id             |
| 5  | Team        | id, nama, manor_id               |
| 6  | Pekerja     | id, nama, no_telp, alamat,       |
|    |             | jabatan                          |
| 7  | Rencana     | id, proyek_id, nama,             |
|    | Kerja       | durasi_hari,                     |
|    |             | tgl_mulai,tgl_selesai, urutan,   |
|    |             | pendahulu_id, es,ef,sf,sl,ls,lf  |
| 8  | Rab         | id, renja_id, kuantitas, satuan, |
|    |             | harga, total, deskripsi          |

# 2.6 Functional Requirements Analysis

Functional requirements analysis describes the process of activities that will be applied in the system and explains the needs needed for the system to run well and in accordance with needs



Gambar 5 Diagram Konteks

# 2.7 Sistem Design



Figure 6 Skema Relasi. 2.8 Interface Design

## 1. Login Menu



# 2. Schedule Design



## 3. Cost Evaluation Design



#### 4. Risk Design



#### 2.9 Testing

System testing is the most important thing that aims to find errors and deficiencies in the software being tested. Tests on software to know the software that created sudan meet the criteria or not

## 2.9.1 Blackbox Testing

Blackbox testing is performed on system functions to determine whether the function has run as expected or not.

# 3. CLOSING

The results of research and testing that have been done can be concluded that the system can help the person in charge in arranging schedules, rab and risk identification. Afa some suggestions that can be done for the development of this system, among others:

1. Repairing the interface for the mobile version of the web

# DAFTAR PUSTAKA

- D.S.Sihabudin S, "Implementasi Critical Path Method dan Pert Analysiis pada Proyek Global Technology for Local Community, "*Teknologi Informasi dan Telematika*, vol.5 pp 14-22 2012
- [2] Carl S. Carlson, Understanding and Applying the Fundamentals of FMEAs, Tucson, Arizona 85710 USA:AR&MS Tutorial Notes, 2014.
- [3] M. W. Laura B.R Balaka and R.Sriyani, "PENGAPLIKASIAN METODE EARNED VALUE PADA PENGENDALIAN WAKTU TERHADAP BIAYA (Studi Kasus : Proyek Penggantian Jembatan Sungai Langkolome Cs Kabupaten Muna),' *Stabilita*, vol 1, no.3, pp 359-372, 2013
- [4] Labombang, Bastura, "Manajemen Resiko dalam Proyek Konstruksi," *Smartek 2011*, pp. 39-46,2017
- [5] D.S.S.Sahid, "Implementasi Critical Path Method dan PERT Analysis pada Proyek Global Technology for Local Community," *Jurnal Teknologi Informasi dan Telematika*, vol 5, pp.14-22, 2012.
- [6] Project Management Institute, A Guide To The Project Management Body of Knowledge (PMBOK Guide) – Fifth Edition, 2013.
- [7] E. Sari, "ANALISIS RESIKO PROYEK PADA PEKERJAAN JEMBATAN SIDAMUKTI-KADU DI MAJALENGKA DENGAN METODE FMEA DAN DECISION TREE," Jurnal J-Ensitec, vol. 03, 2016.
- [8] M.W. L. Bulo, R. Balaka dan R. Sriyani, "Pengaplikasian Metode Earned Value pada Pengendalian Waktu Terhadap Biaya," Stabilita, vol.1, p. 363, 2013
- [9] T. Sutarbi, Analisi Sistem Informasi, Yogyakarta : Andi, 2012.
- [10] A. Solichin, Pemrograman Web dengan PHP dan MySQL, Jakarta: Universitas Budi Luhur, 2016.
- [11]