

DEVELOPMENT OF DYNAMIC ID GENERATOR EXTENSION

ON POSTGRESQL

Muhamad Lukman Hakim1, Alif Finandhita2
1, 2 Teknik Informatika – Universitas Komputer Indonesia

Jl. Dipatiukur 112-114 Bandung
E-mail : lukmanhakim@email.unikom.ac.id1, alif.finandhita@email.unikom.ac.id2

ABSTRAK

A database requires an index number [1]. Use

index numbers to distinguish one data from another
data. The goal is to make it easier to find [2]. The
form of index numbers can also vary in the form of
rows of numbers, or a combination of numbers and
letters that represent certain meanings. For examples
numbering which has a prefix or prefix as in the
accounting account numbering account. The auto
increment feature in the database cannot provide
prefixes that have prefixes automatically.

Based on this we need a function that can handle
numbering that has prefixes or suffixes or prefixes
and suffixes that can be run automatically. In multi-
tenant architecture that must be flexible [3] and has
several applications in it. The numbering function is
experiencing code redundancy. The redundancy of
the code requires great attention because on one
hand it can be beneficial and on the other hand it can
be dangerous [4]. Extension id dynamic generator is
a software concept extension that was built to be the
solution of the previous exposure. The dynamic id
generator extension will use high-performance
databases such as PostgreSQL with a speed of 7.6
times faster than MySQL [5] and users increase by
an average of around 16.5% per year (2016-2019)
[6].

From the test results it can be concluded that the
dynamic ID generator extension on PostgreSQL can
make automatic numbering that has prefixes or
suffixes or prefixes and suffixes without code
redundancy.
Keywords: Index, Prefix, Suffix, Extension, Multi
Tenant.

1. INTRODUCTION
This section will explain the background,

purpose and objectives, and theoretical basis.

1.1. Background
In order to speed up and simplify searching for

information stored in a database an index number [1]
is needed. Giving index numbers for data rows is
unique to distinguish one from another. The form of
index numbers can be in the form of rows of
numbers, or a combination of numbers with letters
that represent a meaning and can also have certain
patterns. For examples Chart of Account numbering

which has an XYYYZZ structure where X
represents the asset account code, Y represents the
group code and Z represents the account details. In
making numbering for account details, the form X
and Y will not change while Z will change according
to the order of making in other words X and Y will
be the prefix for Z. Seeing the complexity of the
index number form, we need a function that handles
number assigning The index can automatically add
prefixes or suffixes or a combination of prefixes and
suffixes.

Multi tenant software is software designed to
serve many customers with different needs.
According to S. Aulbach Multi tenant software must
be able to meet diverse customer needs. To meet
different needs, multi-tenant software must be built
with a flexible architecture both in the software
architecture and in the data scheme [2].

The problem that arises when a function is made
in an application in software with multi-tenant
architecture is code redundancy. According to Bayu
Priyambadha Code redundancy or code duplication
is a code with the same function in software without
or with changes. The redundancy of the code
requires great attention because on the one hand it
can be beneficial but on the other hand it can be
dangerous. For examples if an error occurs in a
block of code but the code has been cloned to
several parts of a file or application, then repairs
must be made to all the same code blocks. Some
code blocks need to be adapted to the logic flow
where the code blocks are placed. Uncodified code
blocks will cause process errors [3].

In the database there is an automatic index
numbering feature. Because this function is attached
to the database, if implemented in multi-tenant
software there will be no function redundancy.
However, a good performance database is needed.
PostgreSQL which performs better than other open-
source databases can process 100,000 data with the
same type PostgreSQL superior to 7.6 times faster
than MySQL. Whereas the delete process is almost 2
times faster [4]. In 2017 and 2018 PostgreSQL was
named the "DBMS of the Year". According to a
survey conducted by DBEngineRank, PostgreSQL
showed an average user growth of around 16.5% per
year in the period January 2016 to January 2019. In
2019 PostgreSQL users rose 15.5% from the

previous year while MySQL users fell by around
11.2% [5].

Automatic index numbering which can be
handled by the PostgreSQL database is in the form
of auto-increment whereas based on previous
exposure the index numbering form has prefixes or
may have suffixes or have prefixes and suffixes.
Then it is necessary to make an additional function
in the database to handle numbering by adding
prefixes or suffixes or prefixes and suffixes.

Based on the problems that arise in giving index
numbers automatically having prefixes or suffixes or
prefixes and suffixes, "Dynamic ID Generator
Extension Development in PostgreSQL" will be
carried out which can adjust the needs.

1.2. Purpose and Objectives

The purpose of this research is to build a
dynamic id generator extension in postgresql with
the aim of:
1. Create functions that can add prefixes or suffixes

or prefixes and suffixes to numbering
automatically.

2. Replace the numbering functions that exist in
each application in a multi-tenant architecture
with one extension installed in the database.

1.3. PostgreSQL Extension

PostgreSQL is the most sophisticated open-
source database. Developed at the University of
Berkeley led by Michael Stonebraker in 1986-1994.
Open-source software means no company. With a
system like this, developers have the possibility to
contribute ideas to solve problems [7].

Extensions allow the expansion of functionality
and special content outside the application and make
it available to users when interacting with the
application.

The purposes why the application supports
extensions are:
1. Allow third-party developers to improve and

develop application capabilities.
2. To support the ease of adding new features.
3. To reduce the size of the application.
4. To separate the source code from the application

due to incompatible software licenses.
In PostgreSQL there are already many functions,

operators, data types and aggregations, but
sometimes users still need to create their own
functions so that their needs can be met in the form
of extensions [8].

1.4. Procedural Language Functions

PostgreSQL allows user-defined functions to be
written in languages other than SQL and C. These
other languages are generally referred to as
procedural language (PL).

Functions written using procedural language
cannot be directly read by the PostreSQL database.
But the task can be forwarded to a special handler

who knows the details of the language. The handler
used will do all the work of parsing, syntax analysis,
execution and so on or it can also be a "glue"
between PostgreSQL and the existing
implementation of the programming language used.
Handler is a C language that is compiled into shared
objects and loaded on demand, just like functions
written in other C languages [8].

At present there is a special procedural language
for the GO language under the name PLGO. PLGO
is a tool that can be used to create PostgreSQL
extensions using the GO language. PLGO will wrap
the code in GO language so that it can be read and
run by PostgreSQL.

1.5. GO

Code less, compile quicker, execute faster =>
have more fun !. The sentence that states in its
entirety regarding the GO language.

Some Google employees feel frustrated when
developing a software using C ++. It takes a long
time to compile and the language is "old". Many
tools and ideas have developed in the last few
decades but do not have the opportunity to be
influenced using the C ++ language. What they need
is language that can solve problems:
1. Software must be built quickly.
2. Language must be able to work well on many

platforms.
3. Language must be able to run well on computer

networks.
4. Language must be easier to use.

GO was born with a dynamic language like
Python or Ruby, but it has performance and security
like C or Java. Built by developing from its
predecessor language C / Java / C #.

GO is a new language that introduces many
interesting features that make programming easier.
GO utilizes a simple memory model to automatically
manage multiple executions, which can be far easier
than the manual approach carried out by C.

Because the initial design of GO was simple,
actually GO could not be one level with C. For
compile time, GO could outperform C but in the
performance of a large software, C was better. GO's
goal is to have a performance approach with C and
make software engineering easier [9].

1.6. JSON

The JSON data type is used to store JSON
(JavaScript Object Notation) data, as defined in RFC
7159. Such data can be saved in text format, but the
JSON data type has advantages in its use because the
data stored is valid according to JSON rules.

There are two types of JSON, json and jsonb.
Both have almost identical sets of values as input.
The difference is in terms of efficiency. The json
data type stores an exact copy of the text input,
whose processing function must be repeated at every
execution, while jsonb is stored in a decomposed

binary format which makes it a bit drawable to be
input because of the added conversion overhead, but
it is significantly faster to process, because no need
to repair. Jsonb also supports indexing which is a
significant advantage [8].

2. RESEARCH CONTENTS

2.1. System Analysis and Design

In this section explained the analysis and design
of the system to be built.

2.1.1. Problem Analysis

Based on the previous presentation, there are two
problems, namely:
1. The automatic numbering feature in the

PostgreSQL database cannot add prefixes or
suffixes or prefixes and suffixes. The current
state of the automatic numbering feature in the
PostgreSQL database is auto-increment.

2. Redundancy of code blocks used to create
numbering functions in software with multi-
tenant architectures can cause process errors if
the initial code block has errors before being
copied to applications that are on multi-tenant
architectures. The current condition is that the
code block for numbering is copied into two
applications, for example in an accounting
application and an employee management
application.

Table 1. The code used for numbering in accounting

applications.

public function numberGenerator($params = null)
{
 // get last increment value
 $LastValueQuery = "
 SELECT id
 FROM accounting
 ORDER BY id DESC
 LIMIT 1
 ";

 $getLastValue =
DB::SELECT(DB::RAW($LastValueQuery))-
>get()[0];

 $incrementValue = $getLastValue + 1;

 // assign prefix and suffix value
 if($params->prefix_type == 'constant') {
 $prefix = 'ACC';
 } else {
 $prefix = $params->prefix ? $params-
>prefix : '';
 }

 if($request->suffix_type == 'constant') {
 $suffix = 'ACC';
 } else {

 $suffix = $params->suffix ? $params->suffix
: '';
 }

 // assign number pattern
 $number = $prefix . $incrementValue . $suffix;

 return $number;
}

Table 2. Code used for numbering in employee

management applications.

public function numberGenerator($params = null)
{
 // get last increment value
 $LastValueQuery = "
 SELECT id
 FROM work_contract
 ORDER BY id DESC
 LIMIT 1
 ";

 $getLastValue =
DB::SELECT(DB::RAW($LastValueQuery))-
>get()[0];

 $incrementValue = $getLastValue + 1;

 // assign prefix and suffix value
 if($params->prefix_type == 'constant') {
 $prefix = 'SPKWT';
 } else {
 $prefix = $params->prefix ? $params-
>prefix : '';
 }

 if($request->suffix_type == 'constant') {
 $suffix = 'PRG';
 } else {
 $suffix = $params->suffix ? $params->suffix
: '';
 }

 // assign number pattern
 $number = $prefix . $incrementValue . $suffix;

 return $number;
}

2.1.2. Multi Tenant Architecture Analysis

Multi-tenant is a principle of software
architecture, where a software that runs on a server
serves many users / tenants. The multi-tenant
scheme used is multi-tenant with a single-database
with details in Figure 1:

Figure 1. Single-database multi-tenant architecture.

The workflow of a single multi-tenant database
architecture is as follows:
1. Tenants or users make requests for services that

are in the Application Services. The tenant
request contains information about what service
to use.

2. Requests from tenants are channeled using cloud
media or an internet connection to the web
server.

3. The web server accepts requests from tenants,
and forwards them to the Gateway API.

4. Gateway API forwards requests from tenants to
middleware.

5. Middleware as a controller will check to where
the request from the tenant will be forwarded
then the middleware forwards the request to the
application services.

6. In the application services there are several
applications for example accounting and
employee management systems. Applications
services will process tenant requests based on the
information available on the tenant request and
the results are returned to the middleware.

7. Middleware will read the results of the process of
applications services and direct the results of the
process to the database.

8. After the results of the process are obtained, the
database manipulates data from the results of the
process either stored, deleted or changed. Then
the database informs the middleware that the
data has been manipulated.

9. Middleware forwards data and information on
the Gateway API.

10. The Gateway API will display information and
be retrieved by the web server.

11. Web server will return tenant requests via cloud
or internet.

12. Tenant gets the results of requests made.
This process will run exactly the same even if the

tenants who make requests are different. With
architecture like this, the process in it needs to be
made as dynamic as possible. According to S.
Aulbach Multi-tenant software must be able to meet
diverse customer needs. To meet different needs,
multi-tenant software must be built with a flexible
architecture both in the software architecture and in
the data schema [2].

2.1.3. Numbering Analysis

Numbering is not just a series of numbers that
distinguishes one information from other

information. Numbering can have a certain pattern
form that stores additional information. Numbering
that has a pattern can be broken down into several
sections.

The front of a number that doesn't change and
has a certain meaning is called a prefix. Prefixes
usually represent a certain group or section so the
numbering used can be grouped. Whereas the back
of a number that doesn't change and has a certain
meaning is called a suffix. Suffixes can act like
prefixes when numbering does not have a prefix or
can be a detailed part of something when numbering
has a combination of prefixes and suffixes.

The following sample data list of estimated
accounts obtained from PT Mabra Technology
Solutions can be seen in table 3.

Table 3. List of chart of accounts from PT

Mabra Technology Solution.

Chart of Account Account Name

1 Aset

1101 Kas & Bank

110101 Kas Kecil

110102 Bank

1102 Piutang Usaha

110201 Piutang Usaha

1103 Persediaan

110301 Persediaan

1104 Aset Tetap

110401 Inventaris Kantor

Chart of account account numbering has the

following rules:
1. First digit is the account classification.
2. Second to Fourth Digits (three digits) are groups

of accounts.
3. The Fifth and Sixth Digits (two digits) are

account details.
The numbering rules that are set in the chart of

account numbering standard are only the first digits
as a classification, while there are no standard rules
for numbering account groups and account details.

The next data sample is the numbering of
employee contracts obtained from PT Mabra
Technology Solution can be seen in table 4.

Table 4. Sample data on employee contract

numbering from PT Mabra Technology Solution.

Contract

Number

First

Date

Last

Date

Employee

code

PKWTT/
001/CTO

26 Jul
2017

26 Nov
2055

9607001

PKWTT/
002/MIT

26 Jul
2017

3 Mar
2056

9607002

SPKWT/
003/PRG

5 Jan
2018

20 Jun
2018

9607003

SPKWT/
004/PRG

21 Jun
2018

1 Jan
2019

9607003

SPKWT/
005/PRG

21 Agu
2018

20 Okt
2018

9607004

SPKWT
/006/PRG

21 Feb
2019

20 Mei
2019

9607005

Contract numbering has the following rules:
1. The first segment describes the status of the

employee. PKWTT for permanent employees
and SPKWT for temporary employees.

2. The second segment is the increment of the
contract release sequence.

3. The third segment is the position code.
With the forms and rules for making

approximate account numbering from data samples,
it can be concluded that the general form of
forecasting account numbering is as follows:

Prefix + Increment

The general form obtained from the contract

numbering analysis from existing data samples is as
follows.

Prefix + Increment + Suffix

In addition to the different numbers, the number

of digits also has a difference. For examples for
classification (Assets) numbering only uses one
digit, while for account grouping (Cash & Bank)
uses three digits and account details (Petty Cash)
uses two digits.

Data needed to generate ID numbers based on
case examples that are pulled in the general form
are:
1. Prefix.
2. Suffix.
3. Number of digits used in increment.
4. The character used as a filler in the length of the

digit increment (padding).

2.1.4. Analysis of Numbering

Based on the numbering analysis that has been
done, the results of how the numbering process
works are as follows:
1. Checking and taking the last increment value.
2. Check the prefix information obtained, whether

there is a constant value or not.
3. Getting input data in the form of prefix and

suffix information, as well as prefix and suffix
forms.

4. If there is a constant value in the prefix
information input data, then the prefix value will
be entered with the value written in the code
block.

5. If there is no constant value, then the prefix value
will be entered with the prefix input value.

6. If there is a constant value in the suffix
information input data, then the suffix value will
be entered with the value already written in the
code block.

7. If there is no constant value, then the suffix value
will be entered with the suffix input value.

8. The final process is the merging of prefixes,
increments and suffixes.
Based on the numbering process that has been

described, a flowchart can be made that illustrates
the numbering process in Figure 2.

Figure 2. Numbering flowchart.

Based on the results of the analysis of the code

block numbering functions before in the analysis of
the problem as well as the numbering form in the

numbering analysis can be made pseudocode which
is the main basis of the logic of the numbering
function.

Table 5. Pseudocode numbering making.

Start
 input(info_prefiks, info_suffiks, b, c)
 a = getLastIndex() + 1

 if (info_prefix == ‘constant’) {
 prefix = Constant Value;
 } else {
 prefix = b
 }

 if (info_suffix == ‘constant’) {
 suffix = Constant Value
 } else {
 suffix = c
 }

 d = prefix + a + suffix

 return d
End

2.1.5. Data Analysis

Analysis of the data used in this research is ORM
(Object Relational Mapping) data analysis. ORM
does the mapping of database tables that are owned
by an entity class in an object-oriented programming
language [10].

To be able to do this, a link in the form of JSON
is needed to connect the ORM with the existing
tables in the database. JSON format structure is
divided into two, namely data objects and data
arrays [10].
1. Object Data

JSON structure data object is data that is
received by the database is a single data or in the
form of an object.

Table 6. Object Data.

{
 “key”: “value”,
}

2. Array Data

JSON structure data array is data received by the
database is a single data or in the form of an object
with additional information in the form of an array.

Table 7. Array Data.

{
 “key”: “value”,
 “items”: [
 {
 “key”: “value”,
 },
]

}

Numbering data storage in the form of JSON is

divided into two, the first form of numbering and the
second use of numbering.

Table 8. Number data storage form.

{
 “prefix”: {
 “type” : “(constant / system)”,
 “constant”: “prefix”
 },
 “suffix”: {
 “type”: “none”
 },
 “increments”: {[
 {
 “type” : “numeric”,
 “length” : “length of number”,
 “padchr” : “0”,
 “padded” : true
 },
]},
}

Table 9. Number usage data storage.

“field”: {
 “target column”
 },
 “increments”: {
 “value” : “next increment value”,
 },
}

2.1.6. Functional Requirements Analysis

The following is a use case diagram of the
software built.

Figure 3. Use Case

2.1.7. Database Design

Database design is the stage to map the
conceptual model into the database model that will
be used, along with the relation scheme used by the
extension id generator.

Figure 4. The relation scheme used by the

extension.

2.2. System Implementation and Testing

In this section, an implementation environment is
described, which is a description of the hardware
and software specifications in which the built
extension will be implemented. Furthermore, testing
is performed on the function of the extension that
has been built.

2.2.1. Implementation Environment

The implementation environment is a description
of the specification in which the extension will be
implemented.
1. Hardware Environment.

Following are the software specifications used
for implementing the extension.

Table 10. Hardware Environment Implementation.

No. Kebutuhan Spesifikasi

1 Prosesor Intel Core i5 2.7 GHz

2 Memori 8 GB

3 Penyimpanan SSD 125 GB

2. Software Environment.

The following software specifications are used
for implementing extensions.

Table 11. Implementation of Software Environment.

No Name Sources Info

1 PostgreSQL
PostgreSQL
9.6

Used as an
operational
database.

2 PGAdmin3 PGAdmin

Used to
access the
postgresql
database.

3 PL/GO
Github:
microo8/plgo

Tools used to
create
extensions
with stored
procedures
and triggers
in GO.

4 GO Google

Open-source
programming
language.
Used to
create,
retrieve
resources and
compile
extensions.

2.2.2. Implement extensions
Following is the implementation of the extension

in postgresql:
1. Use the 'CREATE EXTENSION idGenerator'

command.

Figure 5. The generator id extension for

PostgreSQL uses pgAdmin.

2. Utilization of extensions in the database table is
called by using query trigger before insert.

Figure 6. Utilization of the id generator extension in

the account table.

3. Information that needs to be added after the

insert query in table 12.

Table 12. Information for extensions.

{
 "@number": {
 "prefix": {"value":" Prefix"},
 “suffix” : {“value”:”suffix”},
 "increments": [null],
 "id": "Target Column",
 "tenant_id": “tenant id”
 }
}

2.2.3. Testing

Testing is done on software using the black-box
method focusing on functional requirements.

1. Testing Plan

The functional testing plan that will be
performed on extensions uses the black-box method.
Testing focuses on the requirements needed by the
functional.
2. Testing Scenarios

Testing is done by trying all the possibilities that
occur and testing is done repeatedly, if the test found
an error will be carried out a search or repair to
correct errors that occur. The test plan that will be

carried out on the extension built can be seen in
table 13.

Table 13. Test plan.

Process

Name

Test

Point

Test

Method

Test

Detail

Number

Insert data
without
prefiks

Black Box Equivalence
Partitioning

Insert data
with
prefiks

Black Box Equivalence
Partitioning

Insert data
without
sufiks

Black Box Equivalence
Partitioning

Insert data
with
sufiks

Black Box Equivalence
Partitioning

Insert data
without
prefiks
and sufiks

Black Box Equivalence
Partitioning

Insert data
with
prefiks
and sufiks

Black Box Equivalence
Partitioning

3. Testing Evaluation

After testing the functionality, there are results of
the test and it can be concluded that:
1. In testing the functionality of the dynamic id

generator extension id software on postgresql,
the built extension has been running as expected.
Extensions can make numbering by adding
prefixes or suffixes or prefixes and suffixes.

2. Previous numbering functions that exist in some
applications in software with multi-tenant
architecture can be removed and replaced by
extensions in the database. Thus the code
redundancy does not occur which can cause a
problem in the future.
In the testing phase of building the dynamic id

generator extension at postgresql the initial objective
of building this extension has been achieved. The
objectives achieved based on the test results are:
1. Create functions that can add prefixes or suffixes

or prefixes and suffixes to numbering
automatically.

2. Replace the numbering functions that exist in
each application in a multi-tenant architecture
with one number extension installed in the
database.

3. CONCLUSION
Based on the Dynamic ID Generator Extension

test results, the following conclusions are obtained:
1. The need for index numbering automatically by

adding prefixes or suffixes or prefixes and
suffixes can be fulfilled by the built function.

2. The numbering functions that exist in every
application in the software with multi-tenant
architecture can be replaced by the dynamic ID
generator extension installed in the database.
Thus the code redundancy can be eliminated.
The suggestions that can be used as a reference

for developing extensions to a better direction are as
follows:
1. Adds a function to increment by adding more

than one increment value.
2. Save the value that has been generated but deleted

so it can be used again.

REFERENCES

[1] K. C. C. G.G. Liversidge J.F. Bishop, D.A.

Czekai, “United States Patent (19) 54,” vol.
96, no. 19, pp. 62–66, 1980.

[2] I. Afrianto, A. Heryandi, A. Finandhita, and
S. Atin, “E-Document Autentification With
Digital Signature For Smart City : Reference
Model,” vol. 407, pp. 1–6, 2018.

[3] S. Aulbach, T. Grust, D. Jacobs, A. Kemper,
and J. Rittinger, “Multi-tenant databases for
software as a service: schema-mapping
techniques,” Proc. 2008 ACM SIGMOD Int.

Conf. Manag. data - SIGMOD ’08, p. 1195,
2008.

[4] B. Priyambadha and S. Rochimah,
“Kuantifikasi Pengaruh Kloning Dan
Kompleksitas Kode Terhadap Cacat Pada
Evolusi Perangkat Lunak,” JUTI J. Ilm.

Teknol. Inf., vol. 11, no. 2, p. 19, 2014.
[5] C.-O. Truică, A. Boicea, and F. Rădulescu,

“Asynchronous Replication in Microsoft
SQL Server, PostgreSQL and MySQL,” The

2013 International Conference on Cyber

Science and Engineering (CYBERSE 2013).
pp. 50–55, 2013.

[6] Solid IT, “DB-Engine Ranking,” 2019.
[Online]. Available: https://db-
engines.com/en/ranking.

[7] B. Momjian, “PostgreSQL Introduction and
Concepts,” Read, p. 462, 2002.

[8] T. Postgresql and G. Development,
PostgreSQL 9.6.13 Documentation. .

[9] I. Balbaert, The Way To Go: A Thorough

Introduction To The Go Programming

Language. 2012.
[10] A. M. Bachtiar and I. I. Sukirman,

“Pembangunan Perangkat Lunak Extension
Browser Pada Aplikasi Pengawasan
Penggunaan Internet Anak ‘ Dodo Kids
Browser ’ Teknik Informatika – Universitas
Komputer Indonesia Jurnal Ilmiah Komputer
dan Informatika (KOMPUTA),” vol. 6, pp.
45–50, 2015.

	DEVELOPMENT OF DYNAMIC ID GENERATOR EXTENSION
	ON POSTGRESQL

