
TRANSLATION OF INDONESIAN NATURAL LANGUAGE TO

SOURCE CODE IN PASCAL LANGUAGE

Mohammad Kohar1, Ken Kinanti Purnamasari2

1,2 Teknik Informatika – Universitas Komputer Indonesia

Jl. Dipatiukur 112-114 Bandung 40132

Email : kohar@email.unikom.ac.id1, ken.kinanti@email.unikom.ac.id2

ABSTRACT

Source code in computer science is a collection of

commands to solve a problem written in a

programming language. But programming

languages are usually difficult to understand,

because the structure of the language is rigid and

unnatural. One way that can be done so that

programmers do not need to understand the

structure of a programming language is by

translating from natural languages to programming

languages. Therefore, this study will translate from

natural language in Indonesian to source code in

Pascal language. The method used in this research

is rule-based method. The process on the system

has three main stages, namely preprocessing (case

folding and filtering), analysis (scanning and

parsing), and translation (code generation). The

preprocessing stage is done so that the input text is

clean of characters that are not needed, then the

analysis phase is the process of ensuring the input

text is in accordance with the written rules, then

enters the translation phase from Indonesian to

Pascal language. This study can translate the

sequence command which includes creating

variables, calling readln, writeln, and basic

arithmetic operations. Based on the results of

testing of 100 Indonesian command texts

containing 8 combinations of commands it

produces an accuracy value of around 98%.

Indonesian grammar and Pascal language need to

be adjusted again in order to handle more complex

commands.

Keyword : Translation, Source Code, Pascal

Language, Natural Language Processing,

Programming Languages.

1. PRELIMINARY
Source code in the computer science is a

collection of commands to solve problems or

algorithms written in languages that are understood

by computers or commonly called programming

languages [1]. Source code has writing rules that

have been determined by the particular

programming language used. When the

programmer will make a statement or order to do a

process, it must follow the writing rules that are

determined by a programming language. However,

programming languages are difficult to understand,

because the writing structure unnatural. One way to

be able to create programs without having to

understand the structure of programming languages

is by translating from natural languages to

programming languages.

Several studies have been conducted to translate

from English to source code in Python [2] and C

[3], and from Indonesian to source code in C ++

[4]. Research conducted by Satu and Avinash [2]

already able to translate from natural language in

English to source code. In this study [2] can handle

collision cases such as entering values, addition,

and displaying values. The study [2] did not carry

out accuracy testing, so the value of accuracy

obtained was not yet known. Then in the research

carried out by Nadkarni, Panchmatia, Karwa, and

Kurhade [3] and research conducted by Dirgahayu,

Huda, Zukhri, and Ratnasari [4], can handle cases

of collections, branching, and repetition. It's just

that in the study [3] [4] still using input text in

pseudocode in English [3] and Indonesian [4]. Until

now, researchers have not found research in the

case of translation of natural language in

Indonesian into the source code.

Based on the description above, this research

will build a translator system from natural language

in Indonesian to source code in Pascal language. In

the translation process, the rule-based method is

determined based on the case raised.

2. THEORETICAL BASIS
The cornerstone of theory is the theories that

became the reference in this study.

2.1. Natural Language Processing

Natural language processing is one branch of

artificial intelligence. Natural language processing

examines communication between humans and

computers with natural language intermediaries that

humans have. In doing so, the natural language sent

to the computer must be processed in advance so

that it is understood by the computer [5]. One

challenge in natural language is the choice of the

meaning of a word that has more than one meaning,

for example the word 'bisa' in Indonesian, the word

'bisa' can mean 'poison' and can also mean 'can'

according to the sentence [6]. Research that can

handle cases of words that have more than one

mailto:kohar@email.unikom.ac.id1
mailto:ken.kinanti@email.unikom.ac.id2

meaning is Part of Speech Tagger, as was done by

Purnamasari and Suwardi [7]. Some areas of

research in the field of natural language processing

are question answering systems, summarization,

speech recognition, document classification, and

machine translation [5]. Machine translation is a

research that focuses on computers that understand

human natural language and translate it into other

languages [5].

2.2. Pascal Language

Pascal language is a programming language

developed by Niklaus Wirth around 1970 [8].

Pascal's name was taken from a mathematician

named Blaise Pascal. This Pascal language was

originally developed for teaching programming

languages.

2.3. Scanning

Scanning is the stage of solving input text into

tokens based on its class [9]. Then the scanning

tokens will be input data at the Parsing stage.

2.4. Parsing

Parsing is a syntactic analysis stage by checking

the order in which strings or tokens appear based on

predetermined grammar. Grammar itself is a

collection of non-terminal symbols, terminal

symbols, and initial symbols that are limited by the

rules of production [9]. Simply put, parsing is the

process of checking input text whether it is in

accordance with the rules of the language used or

not.

3. RESEARCH METHODS
In this study, using descriptive research

methods. Because in this study the facts and

characteristics of objects are described

systematically [10]. The flow of research in this

study includes five stages, namely problem

identification, data collection, method analysis,

software development, and conclusion drawing.

The flow of research can be seen in Figure 1.

Identification Of Problems

Data Collection

Method Analysis

Software Development

Withdrawal Conclusion

Figure 1 Research Flow

The explanation of the research flow in Figure 1 is

as follows.

a. Identification Of Problems

The problem identification stage is a process of

observation of research that has been done

before to determine the needs and objectives of

the system to be achieved.

b. Data Collection

In this study, data collection carried out was a

literator study both printed and electronic.

c. Method Analysis

At the stage of method analysis, the methods

used in this study will be analyzed, starting from

the preprocessing stage, the analysis process,

and the translation process.

d. Software Development

In this study, the development of the software

used is the waterfall model. The waterfall

model is a method of building software that is

sequential in each process [11] [12]. The flow

of the waterfall model can be seen in Figure

2.

Analisis

Design

Implementati

on

Testing

Figure 2 Model Waterfall [12]

e. Withdrawal Conclusion

At the stage of drawing conclusions is an

explanation of the results of the research that

has been done.

4. RESULTS AND DISCUSSION
This chapter will discuss the research conducted

and the results obtained from this study.

4.1. Problem analysis

Source code is a collection of commands to

solve a problem written according to the

programming language used. Source code format of

writing source code is not natural so it is difficult to

learn the structure. Therefore we need a system that

can translate natural language in Indonesian into

source code in Pascal language. Here are examples

of translations from Indonesian into Pascal.

Table 1 Examples of Translation Results

Indonesian Pascal

Buat program

penjumlahan.

Kemudian buat

variabel a dengan tipe

data integer.

program penjumlahan;

var

a : integer;

begin

a := 15 + 2;

Tambahkan 15 dengan

2 masukan ke a.

Tampilkan nilai a.

writeln(a);

end.

Buat aplikasi

hitungluas. Buat

variabel sisi dan luas

dengan tipe data

integer. Baca nilai sisi.

Kalikan sisi dengan sisi

kemudian masukkan

hasilnya ke luas.

Tampilkan nilai luas.

program hitungluas ;

var

 sisi , luas : integer ;

begin

 readln (sisi) ;

 luas := sisi * sisi ;

 writeln (luas) ;

end.

4.2. Input Data Analysis

In this study the input data is in the form of an

Indonesian text containing sentences that are

consecutive to solve a problem. An example of

input data in this study can be seen in Table 2.

Table 2 Sample Input Text

No. Input Text

1 Buat aplikasi inputoutput. Buat variabel x

dengan tipe data integer. Baca nilai x.

Kemudian tampilkan nilai x.

2 Buat aplikasi hitungvolume. Kemudian

buat variabel panjang, lebar, tinggi, dan

volume dengan tipe data integer. Baca

nilai panjang, lebar, tinggi. Kemudian

panjang dikali lebar dikali tinggi

masukkan hasilnya ke volume. Kemudian

tampilkan nilai volume!.

3 Buat aplikasi hitungluas. Buat variabel sisi

dan luas dengan tipe data integer. Baca

nilai sisi. Kalikan sisi dengan sisi

kemudian masukkan hasilnya ke luas.

Tampilkan nilai luas.

4.3. System Overview

In this study, the system that was built will be

able to translate Indonesian into the code in Pascal

language. The system built has three main

processes, namely preprocessing, the analysis

process, and the last is the translation process. In

preprocessing there are stages of case folding and

filtering, the analysis process has stages of scanning

and parsing, and the translation process has a code

generation stage.

Text or file input

Indonesian

language

Indonesian input text

with lowercase letters

Lowercase input text

with characters a-z, 0-9, _ ,

',', '.', And spaces

Case Folding

Filtering

Array of tokens and classes

Scanning

Parsing

Dictionary of

token classes

Indonesian grammar

dictionary

Code Generation

Array of tokens and their

class as well as parsing results

Source code

in Pascal Pascal grammar

dictionary

Preprocessing

Analysis

Translation

Sistem

Figure 1 Overall System Block Diagram

The process will be run when the user enters the

text of the program creation command in

Indonesian.

Table 3 Sample Input Text

Input Text

Buat aplikasi tampil_string. Tampilkan hallo

world!.

4.4. Preprocessing

Preprocessing is the first step to prepare

Indonesian input texts to be ready for use in the

analysis process. Preprocessing has two stages,

namely folding cases and filtering.

Text or input file

Indonesian

Indonesian input text with

lowercase case

Lowercase input text

with a-z, 0-9, _ , - characters,

',', '.', And spaces

Case Folding

Filtering

Figure 2 Preprocessing Block Diagram

a. Case Folding

In this study folding cases are used to

homogenize letters into lower cases or

lowercase letters to facilitate the analysis

process.

Table 4 Example of Folding Case Results

Before

Buat aplikasi tampil_string. Tampilkan hallo

world!.

After

buat aplikasi tampil_string. tampilkan hallo

world!.

b. Filtering

The filering stage is the character sorting phase

which is considered necessary in this study.

Unnecessary characters will be removed or

replaced. In this study the characters allowed to

enter the translation phase are the characters a-z,

0-9, ‘_’, ‘-‘, commas (‘,’), periods (‘.’), and

spaces.

Tabel 5 Example of Filtering Results

Before

buat aplikasi tampil_string. tampilkan hallo

world!.

After

buat aplikasi tampil_string. tampilkan hallo

world.

4.5. Analysis Process

The analysis process is the stage of analyzing

input data whether or not in accordance with the

rules. The analysis process has two stages, namely

scanning and parsing.

Lowercase input text

with a-z, 0-9, _ , - characters,

',', '.', And spaces

Array of tokens and classes

Array of tokens and their class

as well as parsing results

Scanning

Parsing

Dictionary of

token classes

Indonesia language

grammar dictionary

Figure 3 Analysis Process Block Diagram

a. Scanning

Scanning is the stage to change the input text of

the preprocessing results into their tokens and

classes. Then the tokens from scanning will be

used at the parsing and translation process.

Table 6 List of Tokens and Classes

Token Token

Class

‘tambah’, ‘ditambah’,

‘tambahkan’, ‘ditambahkan’,

‘kurang’, ‘dikurang’, ‘kurangkan’,

‘dikurangkan’, ‘kurangi’,

‘dikurangi’, ‘kali’, ‘dikali’,

‘kalikan’, ‘dikalikan’, ‘bagi’,

‘dibagi’, ‘bagikan’, ‘dibagikan’.

Arithmetic

Operator

‘program’, ‘aplikasi’, ‘variabel’,

‘peubah’, ‘tipe’, ‘tipenya’,

‘integer’, ‘string’, ‘bulat’,

‘pecahan’, ‘masuk’, ‘masukkan’,

‘dimasukkan’, ‘isi’, ‘isikan’,

‘diisi’, ‘diisikan’,

‘tampil’, ‘tampilkan’, ‘baca’.

Keyword

‘buat’, ‘buatkan’, ‘buatlah’,

‘kemudian’, ‘lalu’, ‘dan’, ‘dengan’,

‘ke’, ‘data’, ‘datanya’, ‘nilai’,

‘nilainya’, ‘hasil’, ‘hasilnya’,

‘bilangan’.

Additional

Token

[a..z, 0..9, ‘_’] IdentApp

[a..z, 0..9, ‘_’] IdentVar

[0..9, ‘,’ , ‘-‘] Number

[a..z, 0..9, ‘_’] String

‘,’, ‘.’ Delimiter

The example of scanning results from filtering data

in Table 5 can be seen in Table 7.

Table 7 Example of Scanning Results

Before

buat aplikasi tampil_string. tampilkan hallo

world.

After

Token Class

buat AdditionalToken

aplikasi Keyword

tampil_string IdentApp

. Delimiter

tampilkan Keyword

hallo world String

. Delimiter

b. Parsing

The parsing stage is the stage of checking the

order in which the Indonesian input text appears

as a result of the scanning process. The purpose

of the parsing process is to ensure the order in

which the tokens appear according to the rules

that have been made, so that if there is an input

text that is not in accordance with the rules or

grammar the translation process will not be

executed. In the case example in this study the

parsing status was accepted, because all tokens

were successfully derived according to

grammar, a decrease in tokens can be seen in

Table 8.

Table 8 Contoh Proses Penurunan Token

<START>  <PROGRAM_DECL

<DELIMITER BLOCK>

<COMMAND_WORD>

<PROGRAM_KEYWORD>

<PROGRAM_IDENT> <DELIMITER>

<BLOCK>

buat <PROGRAM_KEYWORD>

<PROGRAM_IDENT> <DELIMITER>

<BLOCK>

buat aplikasi <PROGRAM_IDENT>

<DELIMITER> <BLOCK>

buat aplikasi tampil_string <DELIMITER>

<BLOCK>

buat aplikasi tampil_string . <BLOCK>

buat aplikasi tampil_string .

<STATEMENT>_<BLOCK>

buat aplikasi tampil_string .

<STATEMENT_SQUENCE>

<DELIMITER>

buat aplikasi tampil_string .

<STATEMENT> <DELIMITER>

buat aplikasi tampil_string .

<IO_STATEMENT> <DELIMITER>

buat aplikasi tampil_string .

<OUTPUT_STATEMENT> <DELIMITER>

buat aplikasi tampil_string .

<KEYWORD_OUTPUT>

<EKSPRESI_SEQUENCE> <DELIMITER>

buat aplikasi tampil_string . tampilkan

<EKSPRESI_SEQUENCE> <DELIMITER>

buat aplikasi tampil_string . tampilkan

<EKSPRESI> <DELIMITER>

buat aplikasi tampil_string . tampilkan

<EKSPRESI_1> <DELIMITER>

buat aplikasi tampil_string . tampilkan

<FACTOR_SQUENCE> <DELIMITER>

buat aplikasi tampil_string . tampilkan

<FACTOR> <DELIMITER>

buat aplikasi tampil_string . tampilkan

<STRING> <DELIMITER>

buat aplikasi tampil_string . tampilkan hallo

world <DELIMITER>

buat aplikasi tampil_string . tampilkan hallo

world .

4.6. Translation Process

The translation process is the process of

translating Indonesian text into Pascal's language

source code. This translation process will be carried

out when the status is parsed at the analysis stage

‘received’. The translation process has one stage,

namely code generation.

Additional Token

Removal

Array of tokens and their class

as well as parsing results

Pascal source code array

Pascal language

grammar dictionary

Indonesia language

grammar dictionary

Change Tokens

Mapping of Token

Position

Syntactic Adjustment In

Pascal Language

Array of tokens and class

without additional token

Token array according

to Pascal's writing rules

Token array according to the rules

Pascal sequence

Tidying Code

Pascal source code

Figure 4 Code Generation Block Diagram

a. Additional Token Removal

Removal of additional token is the stage of

deleting a token that has a 'AdditionalToken'

class, because in this study the token is

considered unnecessary.

Table 9 Example of Additional Token Removal

Results

Sebelum

Token Kelas

buat AdditionalToken

aplikasi Keyword

tampil_string IdentApp

. Delimiter

tampilkan Keyword

hallo world String

. Delimiter

Sesudah

Token Kelas

aplikasi Keyword

tampil_string IdentApp

. Delimiter

tampilkan Keyword

hallo world String

. Delimiter

b. Change Tokens

At the stage of changing tokens, tokens that

have the class 'Keyword', 'Arithmetic Operator'

and 'Number' will be changed according to the

rules in Pascal language. This conversion

utilizes Indonesian-made Grammar and Pascal

Grammar.

Table 10 Example of Changing Token Results

Before

Token Class

aplikasi Keyword

tampil_string IdentApp

. Delimiter

tampilkan Keyword

hallo world String

. Delimiter

After

program Keyword

tampil_string IdentApp

. Delimiter

writeln Keyword

hello world String

. Delimiter

c. Mapping of Token Position

Token position mapping is the stage of adjusting

the order in which tokens appear according to

the rules of the Pascal language. The token

mapping in this study was carried out for the

assignment command.

d. Syntactic Adjustment In Pascal Language

At this stage it is similar to the parsing process,

except that it does not aim to check the order in

which tokens appear, but to enter tokens token

mapping results into Pascal language grammar,

because there are some codes that do not exist in

natural language writing, such as 'begin' end ',

etc.

Table 11 Example of Syntactic Adjustment

Results in Pascal Language

Before After

program program

tampil_string tampil_string

. ;

writeln begin

hello world writeln

. (

 ‘

 hello world

 ‘

)

 ;

 end.

e. Tidying Code

In the last stage, the token that has been inserted

with the code needed in Pascal's language will

be tidied so that it is easy to understand.

Tabel 12 Examples of Code Making Results

Before After

program program tampil_string ;

begin

 writeln (‘hallo world’) ;

end.

tampil_string

;

begin

writeln

(

‘

hello world

‘

)

;

end.

4.7. Test Result Analysis

Accuracy testing is done by comparing the

translation results obtained from the system with

the expected results. Tests are performed on

variable creation commands, calling readln

functions, calling writeln functions, and basic

arithmetic operations. Tests are carried out on 100

test data which are divided into 8 command

combinations. The results of translational testing

from Indonesian to source code in Pascal language

can be seen in Table 13.

Table 13 Accuracy Test Results

Commands

Combination

Number of

Test Data

Translation

Results

Right Wrong

Without

variables, 1

statement

10 9 1

Without

variables,

more than 1

statement

10 9 1

1 variable, 1

statement

10 10 0

1 variable,

more than

one statement

10 10 0

More than 1

variable,

more than 1

statement

10 10 0

1 arithmetic

operator

15 15 0

2 arithmetic

operators

18 18 0

More than 2

arithmetic

operators

17 17 0

Total 100 98 2

The accuracy value obtained in this study is 98%.

Translation errors are caused by the system's

scanning stage that cannot distinguish decimal

fractions with two numbers separated by commas.

Examples of wrong detection sentences can be seen

in Table 14.

Tabel 14 Scanning Result Error

Input Text Expected

Results

Results of

the system

tampilkan 1, 2,

dan 3.

tampilkan tampilkan

1 1,2

, ,

2 dan

, 3

dan .

3

.

In this study there are several cases that have

not been addressed, and can be used as references

in future studies. Cases that cannot be dealt with are

as follows.

a. The system has not been able to distinguish

decimal fractions with two numbers separated

by commas, as in Table 14.

b. The input sentences are still limited because

Indonesian grammar in this study is still simple.

Examples of sentences that can be handled and

cannot be seen in Table 15.

Table 15 Examples of Assignment Commands

That Are Handled And Not Handled

Example of sentences Status

Tambahkan 12 dengan 1 masukkan

hasilnya ke hsl.

Handled

12 ditambah 1 masukkan hasilnya

ke hsl.

Handled

Hsl diisi dengan hasil penjumlahan

12 dan 1.

Not yet

handled

Jumlahkan 12, 1, dan 2 masukkan

hasilnya ke hsl.

Not yet

handled

c. The system has not been able to handle cases of

branching and repetition, for example in Table

16.

Table 16 Example of Branching and Repetition

Commands

Selection statement

Jika indeks tidak sama dengan e, maka tampilkan

lulus, namun jika tidak tampilkan tidak lulus.

Repeat Statement

Selama i kurang dari 10, maka tampilkan i.

d. The system has not been able to analyze input

data semantically, as in Table 17.

Table 17 Examples of Semantically Wrong

Commands

Input Text Information

Buat aplikasi uji_string.

Buat variabel nama_depan

dan nama_belakang

dengan tipe data string.

Baca nama_depan dan

nama_belakang.

Tampilkan hasil

nama_depan dikali

nama_belakang.

There is a

command that

multiplies two

variable types of

string data.

Buat program uji_coba.

Buat variabel a dengan tipe

data string. Kemudian 12

dimasukkan ke a.

There is a

command to enter

an integer value

into a string

variable.

e. The system has not been able to handle

misspellings in the input text, for example in

Table 18.

Table 18 Error Spell Example In Input Text

Input Text Information

Buat aplikasi uji_string.

Tampikan hallo world.

There is a

misspelled word

‘tampikan’, should

‘tampilkan’.

5. CONCLUSION
Based on the tests that have been done, it can be

concluded that the system can translate natural

languages in Indonesian into source code in Pascal

language. This study received an accuracy value of

98%.

There are several cases that have not been

addressed in this study, therefore this research can

be developed again in the future. There are

suggestions that can be applied to further research,

namely as follows.

a. Add rules that can distinguish fractions with two

numbers separated by commas as in Table 4.14.

b. Add the complexity of Indonesian grammar and

Pascal language to detect more diverse

sentences.

c. Add translation features for the basic structure

of branching and repetition.

d. Add semantic analysis features to the analysis

phase of the Indonesian input text.

e. Add misspelled word correction features.

BIBLIOGRAPHY

[1] R. Munir, Algoritma dan Pemrograman,

Bandung: Informatika, 2011.

[2] D. Satu dan A. Avinash, “Unrestricted Natural

Language Implementation in Programming,”

International Research Journal of Engineering

and Technology, vol. 03, no. 10, pp. 470-476,

2016.

[3] S. Nadkarni, P. Panchmatia, T. Kaewa dan S.

Kurhade, “Semi Natural Language Algorthm

to Programming Language Interpreteur,”

International Conference on Advances in

Human Machine Interaction, 2016.

[4] T. Dirgahayu, S. N. Huda, Z. Zukhri dan C. I.

Ratnasari, “Automatic Translation from

Pseudocode to Source Code: A Conceptual-

Metamodel Approach,” 2017 IEEE

International Conference on Cybernetics and

Computational Intelligence, CyberneticsCOM

2017 - Proceedings, pp. 122-128, 2018.

[5] W. Budiharto dan D. Suhartono, Artificial

Intelligence, Yogyakarta: Andi Offset, 2014.

[6] M. Arhami, Konsep Kecerdasan Buatan,

Yogyakarta: Andi Offset, 2006.

[7] K. K. Purnamasari dan I. S. Suwardi, “Rule-

based Part of Speech Tagger for Indonesian

Language,” IOP Conference Series: Materials

Science and Engineerin, vol. 407, pp. 1-4,

2018.

[8] E. Nugroho, Bahasa-Bahasa Pemrograman,

Yogyakarta: Andi Offset, 1992.

[9] F. Utdirartotmo, Teknik Kompilasi,

Yogyakarta: Graha Ilmu, 2005.

[10] M. Nazir, Metode Penelitian, Bogor: Ghalia

Indonesia, 2014.

[11] R. S. Pressman, Software engineering : A

Practitioner’s Approach Edisi 7, New York:

McGraw-Hill, 2010.

[12] Y. Bassil, “A Simulation Model for the

Waterfall,” International Journal of

Engineering & Technology, vol. 2, no. 5, 2012.

