BAB 4 IMPLEMENTASI DAN PENGUJIAN

Pada bab ini akan dilakukan implementasi dan pengujian terhadap aplikasi yang dibangun. Tahapan ini dilakukan setelah analisis dan perancangan selesai dilakukan dan selanjutnya akan diimplementasikan kedalam bahasa pemograman. Setelah implementasi maka dilakukan pengujian terhadap aplikasi. Aplikasi yang telah dibangun akan diimplementasikan untuk mengetahui apakah aplikasi tersebut dapat berjalan sesuai dengan tujuannya atau tidak.

4.1 Implementasi

Tujuan implementasi aplikasi adalah untuk menjelaskan tentang manual modul kepada semua user yang akan menggunakan aplikasi. Sehingga user tersebut dapat merespon apa yang ditampilkan di aplikasi dan memberikan masukan kepada pembuat aplikasi untuk dilakukan perbaikan agar aplikasi lebih baik lagi.

4.1.1 Implementasi Perangkat pembangun

Perangkat lunak yang digunakan pada aplikasi komputer yang digunakan untuk implementasi teknologi *augmented reality* pada aplikasi adalah sebagai berikut:

1. Perangkat Keras

Perangkat keras yang digunakan untuk pembuatan aplikasi dijelaskan pada **Tabel 4-1**.

Tabel 4-1 Perangkat Keras yang Digunakan

Komputer	Spesifikasi Perangkat Keras
Prosesor	Intel(R) Core(TM) i7-2600 3,40GHz
Layar	1366 x 768
Monitor	LCD 14 inc
Memori	Memori 8 GB
Hardisk	500 GB
Kamera	1,3 Mega Pixel

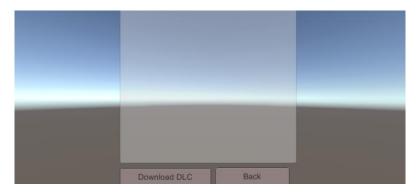
2. Perangkat Lunak

Perangkat lunak yang digunakan untuk mengimplementasikan aplikasi dijelaskan pada **Tabel 4-2**.

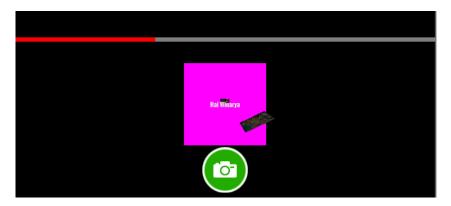
Tabel 4-2 Perangkat Lunak yang Digunakan

Komputer	Spesifikasi Perangkat Lunak
Aplikasi Operasi	Microsoft Windows 7
Bahasa Pemrograman	C#
Engine	Unity
SDK	Vuforia

4.1.2 Implementasi Antarmuka


Pada tahap ini dilakukan penerapan hasil perancangan antarmuka ke dalam aplikasi yang dibangun dengan menggunakan perangkat lunak yang telah dipaparkan pada sub bab implementasi perangkat lunak, yang tercantum pada gambar di bawah ini dan untuk antarmuka selanjutnya dapat dilihat pada :

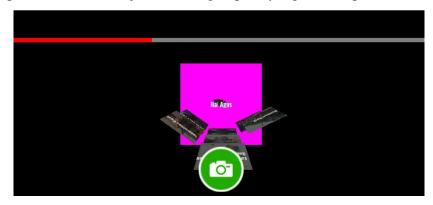
1. Tampilan Utama Eksekusi aplikasi awal akan menampilkan tampilan antarmuka menu utama. Seperti yang terlihat pada **Gambar 4-1**.


Gambar 4-1 tampilan antarmuka menu utama

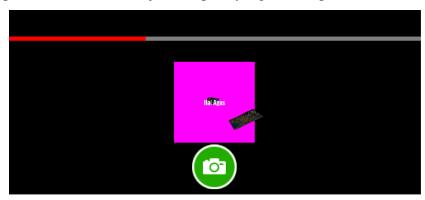
Tampilan antarmuka Konten Tambahan. Seperti yang terlihat pada Gambar 4 2.

Gambar 4-2 tampilan antarmuka tambahan konten

3. Tampilan antarmuka *Introduction* Seperti yang terlihat pada **Gambar 4-3**.


Gambar 4-3 tampilan antarmuka introduction

4. Tampilan antarmuka Main_Konten Seperti yang terlihat pada Gambar 4-4.


Gambar 4-4 tampiln antarmuka main konten

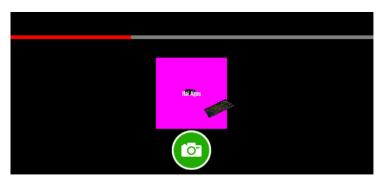
5. Tampilan antarmuka Sejarah Subang Seperti yang terlihat pada Gambar 4-5.

Gambar 4-5 tampilan antarmuka sejarah subang

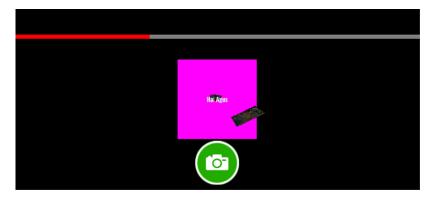
6. Tampilan antarmuka Prasejarah Seperti yang terlihat pada Gambar 4-6.

Gambar 4-6 tampilan antarmuka prasejarah

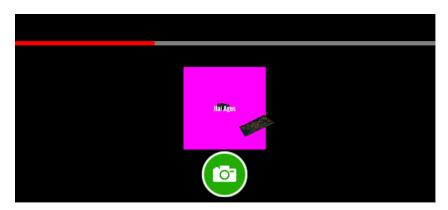
7. Tampilan antarmuka Hindu, Budha, dan islam Seperti yang terlihat pada **Gambar 4-7**.


Gambar 4-7 tampilan antarmuka Hindu, Budha dan Islam

8. Tampilan antarmuka Imperialisme Seperti yang terlihat pada Gambar 4-8.


Gambar 4-8 tampilan antamuka imperialisme

9. Tampilan antarmuka Pergerakan Nasioanl dan Pendudukan jepang Seperti yang terlihat pada **Gambar 4-9**.


Gambar 4-9 tampilan antarmuka pergerakan nasional dan pendudukan jepang

10. Tampilan antarmuka Revolusi Fisik Seperti yang terlihat pada Gambar 4-10.

Gambar 4-10 tampilan antamuka revolusi fisik

Tampilan antarmuka Kabupaten Subang Seperti yang terlihat pada Gambar 4 11.

Gambar 4-11 tampilan antarmuka Kabupaten Subang

4.2 Pengujian

Pengujian aplikasi dilakukan bertujuan untuk menemukan kesalahan atau kekurangan pada perangkat lunak yang diuji. Pengujian bermaksud untuk mengetahui perangkat lunak yang dibuat sudah memenuhi kriteria yang sesuai dengan tujuan perancangan perangkat lunak tersebut.

Dalam penelitian ini pengujian yang dilakukan terhadap aplikasi yaitu pengujian secara fungsional (alpha) dan beta. Metode yang digunakan dalam pengujian ini adalah pengujian blackbox yang berfokus pada persyaratan fungsional dari aplikasi yang dibangun.

4.2.1 Pengujian Blackbox

Pengujian blackbox dilakukan pada sisi pengembangan yang merekam semua kesalahan dan masalah pemakaian. Pengujian blackbox dilakukan pada sebuah lingkungan yang terkendali.

Rencana Pengujian

Rencana pengujian adalah pengujian terhadap fungsi-fungsi yang ada di dalam aplikasi yang dibangun, apakah fungsional dari aplikasi berfungsi sesuai yang diharapkan atau tidak. Berikut ini **Tabel 4-3** rencana pengujian dari aplikasi yang dibangun.

Tabel 4-3 Tabel Rencana Pengujian

No	Komponen Yang	Butir Pengujian	Jenis Pengujian
	Diuji		
1	Menu	Memilih Tombol Mulai,	Blackbox
		Memilih Tombol	
		Tambah Konten0,	
		Memilih Tombol	
		build(kamera),	
		Memilih Tombol Keluar	
2	Pengujian use case	Menjalankan proses,	Blackbox
		menyajikan konten,	
		Menjalankan proses	
		mendeteksi feature,	
		Menjalankan proses	
		membentuk <i>marker</i> ,	
		Menjalankan proses	
		mencocokkan marker,	
		Menjalankan proses	
		Merender informasi,	

4.2.2 Kasus dan Hasil Pengujian Blackbox

Kasus dan hasil pengujian berisi pemaparan dari rencana pengujian yang telah disusun pada skenario pengujian. Pengujian ini dilakukan secara *black box* dengan hanya memperhatikan masukan ke dalam aplikasi dan keluaran dari masukan tersebut. Berdasarkan rencana pengujian, maka dapat dilakukan pengujian blackbox pada aplikasi sebagai berikut:

4.2.2.1 Pengujian Tampilan Menu

Pengujian tampil menu merupakan pengujian fungsionalitas untuk menampilkan menu yang telah diterapkan dalam aplikasi, seperti terlihat pada **Tabel 4-4** berikut :

Tabel 4-4 Pengujian Tampilan Menu

No	Skenario Uji	Hasil yang Hasil	
		diharapkan	Pengujian
1	Memilih	Ketika user menekan	[√] Berhasil
	Tombol Mulai	tombol mulai, maka	[] Tidak
		aplikasi membuka kamera	
		dan memulai menscan	
		frame untuk mendapatkan	
		kualitas frame	
		berdasarkan kekayaan	
		feature	
2	Memilih	Menampilkan scene DLC	[√] Berhasil
	Tambahan	dan dapat mendownload	[] Tidak
	Konten	asset bundles	
3	Memilih tombol	Membuat target baru dan	[√] Berhasil
	buid (kamera)	menyimpannya di dataset	[] Tidak
		sebagai penyimpanan	
		sementara yang	
		dihancurkan ketika	
		berpindah scene	
4	Memilih tombol	Menghentikan aplikasi	[√] Berhasil
	keluar		[] Tidak

4.2.2.2 Pengujian Use Case

Pengujian use case adalah pengujian yang dilakukan pada proses-proses yang dapat dilakukan setelah menerima intruksi oleh pengguna, aplikasi akan melaksanakan proses tersebut hingga selesai dan menghasilkan keluaran yang diharapkan, ditunjukkan pada **Tabel 4-5**.

Tabel 4-5 Pengujian use case

No	Kasu/	Skenario	Hasil yang	Hasil
	Diuji	uji	diharapkan	Pengujian
1	Membuka	Aplikasi	Aplikasi membuka	[√] Berhasil
	Kamera	aplikasi	kamera, menscan	[] Tidak
		dimulai	frame hasil calon	
			<i>marker</i> dan	
			mendeteksi frame	
			serta mengirimkan	
			feedback berupa	
			warna <i>plane</i>	
2	Membentuk	User	Aplikasi mendeteksi	[√] Berhasil
	marker	menyentu	feature dari calon	[] Tidak
		h tombol	<i>marker</i> dan	
		build	menyimpanya dalam	
		(kamera)	penyimpanan dataset	
			berupa array yang	
			kemudian di cocokkan	
			dengan masukan	
			kamera secara runtime	
			dan merender	
			informasi	
3	Menambah	User	Aplikasi melakukan	[√] Berhasil
	konten	menye	koneksi melalui	[] Tidak
		ntuh	protokol http dan	
		tombol	melakukan request	
		downl	untuk mendownload	
		oad	file aset bundle yang	
		pada	dimaksud	
		menu		
		tamba		

		han		
		konten		
4	Mengukur		Aplikasi mengukur	[√] Berhasil
	Kualitas		kualitas <i>frame</i>	[] Tidak
	Frame		berdasarkan	
			standar <i>vuforia</i>	
			SDK untuk	
			dijadikan <i>marker</i> .	
			Mengimplementas	
			ikannya sebagai	
			warna pada <i>plane</i>	
5	Mengekstrak		Aplikasi dapat	[√] Berhasil
	Feature		mengukur kualitas	[] Tidak
			Frame dan	
			mencocokkan	
			<i>marker</i> dengan	
			mengekstrak	
			feature	
6	Merender		Aplikasi merender	[√] Berhasil
	Informas		informasi yang	[] Tidak
	i		telah ditanam	
			dalam scene	
			setelah	
			menjalankan	
			proses	
			mencocokkan	
			marker	
7	Mencocokka		Aplikasi	[√] Berhasil
	n Marker		mencocokkan	[] Tidak
			feature pada calon	
			<i>marker</i> dan yang	
			telah disimpan	

dalam dataset	
setelah proses	
membentuk	
marker berhasil	

4.2.3 Pengujian Jarak

Pada pengujian jarak penggunaan *marker*, semakin dekat jarak *marker* dengan kamera akan mengakibatkan ukuran *marker* yag terdeteksi semakin besar, sehingga bisa tertangkap dengan baik. Namun ketika jark kamera dengan marker semaikin jauh maka ukuran *marker* yang tertangkap kamera semakin kecil, sehingga pola marker manjadi tidak jelas dan mengakibatkan marker tidak terdeteksi.

Salah satu permasalahan dari jarak antara kamera dan marker adalah tingkat kefokusan dari gambar yang ditangkap oleh kamera. Kualitas kamera yang memiliki fitur autofocus maka deteksi *marker* akan berjalan dengan baik. Berikut **Tabel 4-6** adalah hasil pengujian *marker*.

Tabel 4-6 Pengujian Jarak

No Jarak Hasil Pengujian Jarak (Centimeter) 100

Terdeteksi, namun objek 3D tidak tampil 2 60 Terdeteksi, namun objek 3D tidak stabil 50 3 Terdeteksi, namun objek 3D tidak stabil 4 40 Terdeteksi, namun objek 3D tidak stabil 5 30 Terdeteksi dengan baik objek 3D stabil 6 20 Terdeteksi dengan baik objek 3D stabil

4.2.4 Pengujian Sudut

Pada pengujian sudut penggunaan *marker*, semakin tegak lurus sudut terhadap marker dengan kamera akan mengakibatkan hasil render yang terdeteksi semakin baik, sehingga bisa menghasilkan persepsi pengguna dengan baik. Namun ketika sudut kamera terhadap *marker* sejajar jauh maka area *marker* yang tertangkap

kamera semakin kecil, sehingga pola *marker* manjadi tidak jelas dan mengakibatkan *marker* tidak terdeteksi. Berikut **Tabel 4-7** adalah hasil pengujian sudut.

Tabel 4-7 Pengujian Sudut

No	Sudut (Derajat)	Hasil Pengujian Sudut
1	180	Tidak Terdeteksi, objek 3D
		tidak tampil
2	270	Terdeteksi dengan baik,
		namun objek 3D stabil
3	90	Terdeteksi dengan baik,
		objek 3D stabil
4	45	Terdeteksi dengan baik,
		objek 3D stabil
5	30	Terdeteksi dengan baik,
		objek 3D stabil
6	20	Terdeteksi dengan baik,
		objek 3D tidak stabil

4.2.5 Pengujian Pengguna

Pengujian ini dilakukan dengan melakukan kuisioner kepada masyarakat Kabupaten Subang yang memiliki ketertarikan kepada sejarah lokal atau daerah. Pengujian ini bertujuan untuk mengetahui respon pengguna terhadap sistem yang telah dibangun.

4.2.5.1 Pengujian Kuisioner

Pengujian ini menggunakan metode User Acceptance Test, pengujian ini bertujuan untuk mencoba aplikasi dan mengetahui apakah aplikasi yang dibangun sudah memenuhi tujuannya. Pada pengujian ini, kuisioner diberikan kepada 35 responden, dengan 5 pertanyaan yang mewakili tujuan dari pembangunan aplikasi ini, dan dihitung menggunakan skala Likert, dengan skor dari skala masing-masing jawaban yang dijelaskan pada **Tabel 4-8**.

Tabel 4-8 SkalaLikert

Skala	Skor
Sangat Setuju (SS)	5
Setuju (S)	4
Cukup (C)	3
Tidak Setuju (TS)	2
Sangat Tidak Setuju (1
STS)	1

4.2.5.2 Skenario Pengujian Kuisioner

Skenario pengujian yang dilakukan kepada masyarakat Kabupaten Subang yang berminat untuk mempelajari dan melestarikan sejarah lokal atau daerah Kabupaten Subang, dijelaskan pada Tabel **Tabel 4-9**.

Tabel 4-9 Skenario Pengujian Kuisioner

No	Tujuan	Pertanyaan
1	Membantu menarik minat	1. Apakah anda setuju, aplikas
	masyarakat Kabupaten	retrokognitor memberikan and
	Subang untuk mengunjungi	informasi pengetahuan sejara
	pusat-pusat pengetahuan	lokal Kabupaten Subang?
	sejarah Kabupaten Subang	2. Apakah anda setuju, aplikas
		retrokognitor membuat and
		ingin mempelajari sejara
2	Membuat media informasi	Kabupaten Subang lebih dalar
	yang membantu	lagi ?
	memaksimalkan jangkauan	3. Apakah anda setuju, informas
	penyampaian informasi	yang anda dapatkan da
	sejarah Kabupaten Subang.	retrokognitor merupaka
3	Menyediakan media	informasi yang tepat ?
	informasi menyampaikan	4. Apakah anda setuju, aplikasi ir
	informasi mengenai sejarah	membantu jangkaua

Kabupaten Subang secara		penyebaran informasi situs
urut utuh dan berkelanjutan		bersejarah dan sejarah Kabupaten
		Subang?
	5.	Apakah anda setuju, aplikasi ini
		menyuguhkan materi sejarah
		secara berurutan ?

4.2.5.3 Perhitungan Skala Likert

Perhitungan skala *likert* berdasarkan jawaban dari para responden, memiliki beberapa langkah, sebagai berikut :

1. Menentukan skor maksimal, yaitu:

Skor maksimal = skor terbesar x jumlah responden

$$= 25 \times 35$$

= 875

2. Menentukan total skor minimal, yaitu:

Total skor maksimal = skor terkecil x jumlah responden

$$= 17 \times 35$$

= 595

3. Menentukan nilai median, yaitu:

Nilai Median = (total skor maksimal + total skor minimal) / 2

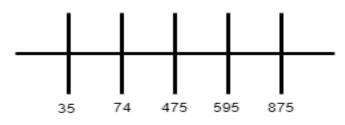
$$= (875 + 595)/2$$

= 74

4. Menentukan nilai kuartil 1, yaitu:

Kuartil 1 = (total skor minimal + nilai median) / 2

$$= (595 + 74)/2$$


= 35

5. Menentukan nilai kuartil 3, yaitu:

Kuartil 3 = (total skor maksimal + nilai median) / 2

$$= (875 + 74)/2$$

 $= 475$

 Setelah menentukan skor, buat skala dengan memasukkan skor minimal sampai skor maksimal yang sudah diperoleh dari perhitungan sebelumnya, seperti Gambar 4- 12.

Gambar 4- 12 Skala

- 3. Membuat batas skor berdasarkan perhitungan sebelumnya, dan dijelaskan pada Tabel 4.15.
- a. Kategori Sangat Positif, yaitu daerah yangdibatasi oleh kuartil 3 dan skor masksimal (kuartil $3 \le x \le$ skor masksimal).
- b. Kategori Positif, yaitu daerah yang dibatasi oleh median dan kuartil ketiga (median \leq x < kuartil 3).
- c. Kategori Negatif, yaitu daerah yangdibatasi oleh kuartil 1 dan median (kuartil $1 \le x < median$).
- d. Kategori Sangat Negatif, yaitu daerah yang dibatasi oleh skor minimal dan kuartil 1 (skor minimal $\leq x <$ kuartil 1).

Tabel 4-10 Tabel Kategori Sikap

Kategori	Batas Skor
Sangat Positif	$875 \le x \le 595$
Positif	$594 \le x \le 475$
Negatif	$474 \le x \le 74$
Sangat Negatif	$73 \le x \le 35$

4.2.5.4 Hasil Pengujian Kuisioner

Hasil dari setiap jawaban kuisioner, yang diisi oleh para responden, ditunjukkan pada **Tabel 4-11**.

Tabel 4-11 Hasil Pengujian Kuisioner

Responden		Clron				
	1	2	3	4	5	Skor
1	4	5	3	4	5	21
2	4	5	3	4	5	21
3	4	3	3	5	4	19
4	4	5	3	3	4	19
5	4	5	3	4	5	21
6	4	3	3	4	5	19
7	5	4	3	3	4	19
8	5	4	4	3	5	21
9	4	4	3	4	4	19
10	5	4	4	3	5	21
11	5	4	4	4	5	22
12	4	4	5	4	5	22
13	4	4	3	4	5	20
14	4	4	4	4	4	20
15	5	4	3	2	4	18
16	5	4	5	4	5	23
17	5	5	4	3	4	21
18	4	5	4	5	4	22
19	4	3	4	4	4	19
20	4	5	4	3	5	21
21	5	4	4	5	5	23
22	5	4	3	4	5	21
23	5	3	2	3	5	18
24	5	4	5	4	5	23

25	4	3	2	3	4	16
26	4	3	5	4	5	21
27	4	3	5	3	5	20
28	4	5	3	4	5	21
29	4	5	5	5	5	24
30	3	4	3	4	3	17
31	5	4	5	3	4	21
32	5	4	4	3	4	20
33	5	5	4	3	4	21
34	4	4	4	4	4	20
35	4	4	3	4	5	20
Jumlah						

Berdasarkan skor yang didapat dari hasil kuisioner kepada 35 orang responden, didapatkan total skor 714. Berdasarkan kategori sikap, maka skor 714 masuk ke dalam kategori sikap sangat positif.

4.2.5.5 Kesimpulan Pengujian Kuisioner

Berdasarkan hasil pengujian secara keseluruhan, maka dapat ditarik kesimpulan, bahwa pengujian fungsionalitas aplikasi *retrokognitor* ini sudah sesuai dengan kebutuhan pengguna. Selanjutnya dalam pengujian kepada pengguna, responden dapat memahami materi pada aplikasi *retrokognitor*. Sehingga, dapat disimpulkan bahwa sistem yang dibangun telah memenuhi tujuan pembangunannya.