# BAB 4

#### IMPLEMENTASI DAN PENGUJIAN

#### 4.1 Construction of Prototype

Setelah tahapan perancangan dikalukan, maka tahapan yang dilakukan selanjutnya adalah tahapan implementasi dari perancangan tersebut. Pada tahap ini dilakukan pembangunan sistem berdasarkan hasil analisis, baik itu berupa perangkat lunak maupun perangkat keras.

## 4.1.1 Implementasi Perangkat Keras

Pada bagian implementasi perangkat keras ini akan dijelas perangkat keras apa saja yang diimplementasikan untuk kebutuhan pembangunan sistem yang digunakan.

## 4.1.1.1 Perangkat Keras Mikrokontroler

Perangkat keras mikrokontroler merupakan perangkat yang terdiri dari mikrokontroller dan sensor. Spesifikasi mikrokontroler yang digunakan dapat dilihat pada table berikut.

Tabel 4.1 Perangkat Keras IoT Untuk Implementasi Sistem

| No | Perangkat Keras   | Keterangan                 |
|----|-------------------|----------------------------|
| 1  | Arduino Uno       | Mikrokontroler             |
| 2  | Sensor Ultrasonik | Sensor Pendeteksi Halangan |
| 3  | SIM900A           | Sensor Sim-card            |
| 4  | GPS Neo-m6        | Sensor GPS Lokasi          |
| 5  | Push Button       | Sensor                     |
| 6  | On/Off Button     | Sensor On/Off              |
| 7  | LED               | Indicator On/Off           |
| 8  | PowerBank         | Sumber Daya                |

## 4.1.2 Implementasi Perangkat Lunak

Pada bagian ini akan dijelaskan perangkat lunak yang digunakan untuk implementasi alat monitoring penyandang tuna netra

## 4.1.2.1 Perangkat Keras Komputer

Bagian ini membahas perangkat keras yang digunakan untuk menjalankan sistem tongkat tuna netra, Detail perangkat keras yang digunakan dapat dilihat pada tabel berikut.

Tabel 4.2 Perangkat Keras Komputer Untuk Implementasi Sistem

| No | Perangkat Keras | Spesifikasi   |
|----|-----------------|---------------|
| 1  | Prosesor        | Intel Core i5 |
| 2  | HDD             | SSD 256       |
| 3  | VGA             | 2GB           |
| 4  | RAM             | 8GB           |

## 4.1.3 Implementasi Perangkat Lunak

Pada bagian ini akan dijelaskan perangkat lunak yang digunakan untuk implementasi sistem tongkat tuna netra.

## 4.1.3.1 Perangkat Lunak Pada IoT

Agar dapat menjalankan sistem monitoring tongkat tuna netra. Komputer yang digunkan sudah terpasang perangkat lunak yang dibutuhkan. Pada tebel berikut dapat dilihat implementasi perangkat lunak pada IoT.

Tabel 4.3 Implementasi Perangkat Lunak Pada IoT

| No | Perangkat Lunak   | Spesifikasi |
|----|-------------------|-------------|
| 1  | Bahasa C          | С           |
| 2  | Bahasa Pemograman | С           |
| 3  | Atom              | HTML        |
| 4  | Xampp             | Xampp       |

## 4.1.3.2 Perangkat Lunak Pada Komputer

Agar dapat menjalankan Sistem monitoring tongkat tuna netra. Komputer yang digunkan sudah terpasang perangkat lunak yang dibutuhkan. Pada tebel berikut dapat dilihat implementasi perangkat lunak pada komputer.

Tabel 4.4 Implementasi Perangkat Lunak Pada Komputer

| No | Perangkat Lunak | Spesifikasi                         |
|----|-----------------|-------------------------------------|
| 1  | Sistem Operasi  | macOS Mojave                        |
| 2  | Browser         | Google Crome, Safari                |
| 3  | Internet        | Terkoneksi dengan jaringan internet |

## 4.1.4 Implementasi Basis Data

Implemntasi basis data merupakan tahapan dimana menerapkan perancangangan database, pembuatan databese menggunakan perangkat lunak XAMPP V.3.2.1. Penerapan databese dapat dilihat pada sub-bab di bawah ini.

#### 4.1.4.1 User

Tabel user digunakan untuk keluarga atau kerabat untuk memonitoring penyandang. Isi dari table user dapat dilihat pada tabel berikut.

Tabel 4.5 User

| No | Field    | Туре    | Size | Kunci       | Keterangan |
|----|----------|---------|------|-------------|------------|
| 1  | Id       | Int     | 11   | Primary key | Not null   |
| 2  | User     | Varchar | 255  |             | Not null   |
| 3  | Password | Varchar | 255  |             | Not null   |

#### 4.1.4.2 Tunanetra

Tabel tunanetra digunakan untuk nama penyandang. Isi dari table tunanetra dapat dilihat pada tabel berikut.

**Tabel 4.6 Tunanetra** 

| No | Field | Туре    | Size | Kunci       | Keterangan |
|----|-------|---------|------|-------------|------------|
| 1  | Id    | Int     | 11   | Primary key | Not null   |
| 2  | Nama  | varchar | 255  |             | Not null   |

## 4.1.4.3 Peta

Tabel peta digunakan untuk mengetahui lokasi terakhir posisi penyandang. Isi dari table peta dapat dilihat pada tabel berikut

Tabel 4.7 Peta

| No | Field     | Туре     | Size | Kunci       | Keterangan     |
|----|-----------|----------|------|-------------|----------------|
| 1  | id        | int      | 11   | Primary key | Not Null,      |
|    |           |          |      |             | Auto Increment |
| 2  | longitude | float    | 8,5  |             | Not Null       |
| 3  | latitude  | float    | 8,5  |             | Not Null       |
| 4  | timestamp | detetime |      |             | Not Null       |

## 4.1.4.4 Implementasi Antar Muka

Implementasi Antarmuka merupakan implmenetasi dari perancangan antaramuka pada bagian *Modelling Quick Design*. Implemetasi dari antarmuka dapat dilihat pada tabel berikut.

**Tabel 4.8 Implementasi Antar Muka** 

| Menu              | Deskripsi                              |
|-------------------|----------------------------------------|
| Login             | Tampilan Login                         |
| Dashboard         | Tampilah halaman Utama                 |
| Tambah Penyandang | Untuk Menambah penyandang              |
| Monitor           | Untuk menampilkan koordinat penyandang |

## **4.2 Deployment Delivery and Feedback**

Pengujian sistem merupakan hal terpenting yang bertujuan untuk menemukan kesalahan atau kekurangan pada sistem informasi yang diuji. Pengujian sistem dimaksud untuk mengetahui kinerja sistem informasi yang telah dibuat sesuai dengan tujuan perancangan sistem informasi. Tipe *Testing* yang dilakukan yaitu meliputi *Testing Functionality* dan *Usability*.

Rencana pengujian yang akan dilakukan adalah dengan cara menguji sistem yang telah dibangun dengan sisi *Functionality* oleh pembuat sistem secara *Black Box* dan dari sisi *Usability* oleh pengguna secara wawancara.

#### 4.2.1 Pengujian Blackbox

Pengujian *black box* berfokus pada apakah perangkat lunak yang dibangun memenuhi kebutuhan yang disebutkan dalam spesifikasi. Pengujian dilakukan dengan menjalankan atau mengeksekusi unit, kemudian diamati apakah hasil dari unit yang diuji tersebut apakah sesuai dengan yang proses bisnis atau tidak.

#### 4.2.2 Skenario Pengujian

Skenario pengujian perangkat lunak untuk pengguna pada Sistem monitoring penyandan, dapat dilihat pada Tabel berikut.

Tabel 4. 9 Skenario Pengujian

| Kasus Uji        | Detail Pengujian                                             | Jenis Pengujian |
|------------------|--------------------------------------------------------------|-----------------|
| Login Pengguna   | Login User                                                   | Black Box       |
| Halaman Utama    | Melihat menu utama                                           | Black Box       |
| Tambah Tunanetra | Melihat, menambah,<br>menghapus, mengedit<br>nama penyandang | Black Box       |
| Monitor          | Melihat posisi<br>penyandang                                 | Black box       |

| 771.1 (21            | Melihat, menambah,        | Black Box |
|----------------------|---------------------------|-----------|
| Hide/Show pagination | menghapus, mengedit       |           |
|                      | baris pada field          |           |
| Urutkan Field        | Melihat pengurutan field  | Black Box |
| Tampilan Field       | Menampilkan field         | Black Box |
|                      | apasaja yang akan dilihat |           |
| Export Data          | Menyimpan data            | Black Box |
| -                    | penyandang                |           |

## 4.3 Pengujian Perangkat Keras

Pemasangan alat telah dilakukan pada implementasi perangkat keras IoT. Untuk mengetahui apakah peralatan berjalan sesuai dengan rancangan awal, diperlukan suatu pengujian. Pengujian dilakukan dengan sensor ultrasonik, gps, sim dan keseluruhan kerja alat.

## 4.3.1 Pengujian Sensor Ultrasonik

Sensor Ultrasonik merupakan sensor yang digunakan untuk mendeteksi halangan atau objek yang ada didepan penyandang. Pengujian sensor ultrasonik didekatkan pada objek yang ada didepannya yang jaraknya <60cm. Pada table 4.10 menunjukan tampilan sistem ketika dilakukan pengujian terhadap sensor ultrasonik 10 kali.

Tabel 4. 10 Hasil Pengujian Sensor Ultrasonik

| No | Jarak Yang Diuji | Hasil            |
|----|------------------|------------------|
| 1  | 0cm              | Tidak Terdeteksi |
| 2  | 10cm             | Terdeteksi       |
| 3  | 20cm             | Terdeteksi       |
| 4  | 30cm             | Terdeteksi       |
| 5  | 40cm             | Terdeteksi       |
| 6  | 50cm             | Terdeteksi       |

| 7  | 60cm | Terdeteksi       |
|----|------|------------------|
| 8  | 70cm | Tidak Terdeteksi |
| 9  | 80cm | Tidak Terdeteksi |
| 10 | 90cm | TIdakTerdeteksi  |

Berdasarkan hasil pengujian yang telah dilakukan terhadap penggunaan sensor Ultrasonik sebanyak 10 kali, dapat disimpulkan bahwa dengan menggunakan sensor Ultrasonik sistem dapat mendeteksi halangan lebih dari 0cm-60cm.

Tabel 4. 11 Pengujian Lebar Sudut Deteksi

| No | Lebar Sudut Yang Diuji | Hasil            |
|----|------------------------|------------------|
| 1  | 0°                     | Terdeteksi       |
| 2  | 10°                    | Terdeteksi       |
| 3  | 20°                    | Terdeteksi       |
| 4  | 30°                    | Tidak Terdeteksi |
| 5  | 40°                    | Tidak Terdeteksi |
| 6  | 50°                    | Tidak Terdeteksi |
| 7  | 60°                    | Tidak Terdeteksi |
| 8  | 70°                    | Tidak Terdeteksi |
| 9  | 80°                    | Tidak Terdeteksi |
| 10 | 90°                    | TIdakTerdeteksi  |

Untuk mengetahui sudut yang terdeteksi oleh sensor ultrasonik. Pengukuran dilakukan dengan menggunakan busur.

Berdasarkan hasil pengujian yang telah dilakukan terhadap sudut penggunaan sensor Ultrasonik sebanyak 10 kali, dapat disimpulkan bahwa dengan menggunakan sensor Ultrasonik sistem dapat mendeteksi halangan dengan sudut

deteksi 15° ke kanan dan 15° ke kiri dengan demikian total sudut deteksi adalah 30°.

## 4.3.2 Pengujian Sensor SIM

Sensor SIM merupakan sensor yang digunakan untuk memberikan pesan dari penyandang kepada keluarga atau kerabat untuk meminta pertolongan saat penyandang berada dalam bahaya. Pengujian sensor sim akan memberikan pesan text saat tombol panik button ditekan. Pada table 4.12 menunjukan tampilan sistem ketika dilakukan pengujian terhadap sensor ultrasonik 10 kali.

Tabel 4. 12 Pengujian Terhadap SIM

| No | Pesan    | Koordinat | Waktu Yang Dibutuhkan |
|----|----------|-----------|-----------------------|
| 1  | Terkirim | Diterima  | 6,97 detik            |
| 2  | Terkirim | Diterima  | 7,40 detk             |
| 3  | Terkirim | Diterima  | 5,82 detik            |
| 4  | Terkirim | Diterima  | 5,87 detik            |
| 5  | Terkirim | Diterima  | 5,07 detik            |
| 6  | Terkirim | Diterima  | 3,90 detik            |
| 7  | Terkirim | Diterima  | 6,45 detik            |
| 8  | Terkirim | Diterima  | 7,50 detik            |
| 9  | Terkirim | Diterima  | 4,71 detik            |
| 10 | Terkirim | Diterima  | 5,65 detik            |

Untuk mengetahui waktu rata-rata yang dibutuhkan kita dapat menggunakan rumus dibawah ini. Penghitungan dilakukan saat push button ditekan hingga bunyi beep panjang berhenti, saat itulah mulai penghitungan menggunakan *stopwatch*.

Gambar 4. 1 Rumus Jumlah Rata-Rata

Berdasarkan hasil pengujian yang telah dilakukan terhadap modul sim untuk mengirim pesan sms sebanyak 10 kali, dapat disimpulkan bahwa dengan menggunakan modul sim sistem dapat mengirim pesan dalam waktu rata-rata 5,93.detik.

## 4.3.3 Pengujian Sensor GPS

Sensor GPS merupakan sensor yang digunakan untuk mendeteksi lokasi dalam bentuk koordinat. Untuk selanjutnya koordinat yang didapat akan dikirim melalui pesan sms kepada keluarga atau kerabat. Pada table 4.13 menunjukan tampilan sistem ketika dilakukan pengujian terhadap sensor gps 10 kali.

Tabel 4. 13 Pengujian Terhadap Sensor GPS

| No | Percobaan | Koordinat           |
|----|-----------|---------------------|
| 1  | 1         | 107.61711,-6.88852  |
| 2  | 2         | 107.61716,-6.88854  |
| 3  | 3         | 107.61713,-6.88851  |
| 4  | 4         | 107.61714,-6.88849  |
| 5  | 5         | 107.61720,- 6.88848 |
| 6  | 6         | 107.61712,- 6.88840 |
| 7  | 7         | 107.61715,- 6.88850 |
| 8  | 8         | 107.61714,- 6.88848 |
| 9  | 9         | 107.61715,- 6.88853 |
| 10 | 10        | 107.61713,- 6.88849 |

Berdasarkan hasil pengujian yang telah dilakukan terhadap sensor gps untuk mendapatkan lokasi dalam bentuk koordinat sebanyak 10 kali, dapat disimpulkan bahwa dengan menggunakan sensor gps sistem mendapatkan koordinat lokasi.

Adapun pengujian untuk perangkat keras yang digunakan

Tabel 4. 14 Pengujian Perangkat Keras

| Alat yang Uji         | Detail Pengujian     | Jenis Pengujian | Keterangan                     |
|-----------------------|----------------------|-----------------|--------------------------------|
| Pusgbutton on/off     | Pengecekan dengan    | Blackbox        | Sensor berhasil berhasil       |
|                       | ditahan hingga bunyi |                 | mengirimkan pesan              |
|                       | beep pada buzzer     |                 |                                |
|                       | berbunyi             |                 |                                |
| Lampu LED             | Pengecekan untuk     | Blackbox        | lampu berhasil memberikan      |
|                       | nyala atau tidaknya  |                 | indikasi on/off sebuah tongkat |
|                       | lampu                |                 |                                |
| Perangkat arduino uno | Pengecekan           | Blackbox        | Perangkat bisa digunakan dan   |
|                       | perangkat arduino    |                 | dapat mengirimkan data ke      |
|                       | uno                  |                 | localhost                      |
| Buzzer                | Pengecekan bunyi     | Blackbox        | perangkat dapat digunakan dan  |
|                       | atau tidaknya suara  |                 | menghasilkan bunyi untuk       |
|                       |                      |                 | tanda                          |

## 4.3.4 Hasil Pengujian Alat

| Objek Yang Uji         | Detail Pengujian     | Jenis Pengujian | Keterangan                    |  |
|------------------------|----------------------|-----------------|-------------------------------|--|
| Pintu                  | Sensor tongkat yang  | Blackbox        | Sensor berhasil mendeteksi    |  |
|                        | sudah dimodifikasi   |                 | objek                         |  |
|                        | dengan               |                 |                               |  |
|                        | mikrokontroler di    |                 |                               |  |
|                        | arahkan kepada objek |                 |                               |  |
| Kursi duduk pinggir    | Sensor tongkat yang  | Blackbox        | Sensor berhasil mendeteksi    |  |
| jalan                  | sudah dimodifikasi   |                 | objek                         |  |
|                        | dengan               |                 |                               |  |
|                        | mikrokontroler di    |                 |                               |  |
|                        | arahkan kepada objek |                 |                               |  |
| Kursi duduk yang lebih | Sensor tongkat yang  | Blackbox        | Sensor gagal mendeteksi objek |  |
| tinggi                 | sudah dimodifikasi   |                 |                               |  |
|                        | dengan               |                 |                               |  |

|                        | mikrokontroler di    |          |                               |
|------------------------|----------------------|----------|-------------------------------|
|                        | arahkan kepada objek |          |                               |
| Meja yang lebih tinggi | Sensor tongkat yang  | Blackbox | Sensor gagal mendeteksi objek |
|                        | sudah dimodifikasi   |          |                               |
|                        | dengan               |          |                               |
|                        | mikrokontroler di    |          |                               |
|                        | arahkan kepada objek |          |                               |
| Motor                  | Sensor tongkat yang  | Blackbox | Sensor berhasil mendeteksi    |
|                        | sudah dimodifikasi   |          | objek                         |
|                        | dengan               |          |                               |
|                        | mikrokontroler di    |          |                               |
|                        | arahkan kepada objek |          |                               |
| Mobil                  | Sensor tongkat yang  | Blackbox | Sensor berhasil mendeteksi    |
|                        | sudah dimodifikasi   |          | objek                         |
|                        | dengan               |          |                               |
|                        | mikrokontroler di    |          |                               |
|                        | arahkan kepada objek |          |                               |
| Tihan listrik          | Sensor tongkat yang  | Blackbox | Sensor berhasil mendeteksi    |
|                        | sudah dimodifikasi   |          | objek                         |
|                        | dengan               |          |                               |
|                        | mikrokontroler di    |          |                               |
|                        | arahkan kepada objek |          |                               |
| Pada orang berjalan    | Sensor tongkat yang  | Blackbox | Sensor gagal mendeteksi objek |
|                        | sudah dimodifikasi   |          |                               |
|                        | dengan               |          |                               |
|                        | mikrokontroler di    |          |                               |
|                        | arahkan kepada objek |          |                               |
| Pada orang tidak       | Sensor tongkat yang  | Blackbox | Sensor berhasil mendeteksi    |
| bergerak               | sudah dimodifikasi   |          | objek                         |
|                        | dengan               |          |                               |
|                        | mikrokontroler di    |          |                               |
|                        | arahkan kepada objek |          |                               |

# 4.3.5 Kasus dan Hasil Pengujian *Blacbox*

Berdasarkan tahapan pengujian blackbox maka dilakukan pengujian dan berikut adalah hasil pengujian blackbox:

# 1. Pengujian login

Hasil pengujian login yang telah dilakukan dapat dilihat pada tabel berikut :

Tabel 4. 15 Pengujian Login

|                  | Kasus dan Hasil Uji (Data Benar) |                     |              |  |  |  |
|------------------|----------------------------------|---------------------|--------------|--|--|--|
| Data masukan     | Keluaran yang                    | Pengamatan          | Kesimpulan   |  |  |  |
|                  | diharapkan                       |                     |              |  |  |  |
| Username : Admin | Mengisi field user               | Dapat mengisi data  | [√] Diterima |  |  |  |
|                  | dan password                     | login dan masuk     | 53 P. 14     |  |  |  |
| Password : Admin |                                  | kehalaman utama     | [] Ditolak   |  |  |  |
|                  | Kasus dan Has                    | il Uji (Data salah) |              |  |  |  |
| Data masukan     | Keluaran yang                    | Pengamatan          | Kesimpulan   |  |  |  |
|                  | diharapkan                       |                     |              |  |  |  |
| Username :       | Menampilkan                      | Dapat               | [√] Diterima |  |  |  |
| (kosong)         | pesan user atau                  | menampilkan user    |              |  |  |  |
|                  | password kosong                  | dan password        | [] Ditolak   |  |  |  |
| Password :       |                                  | kosong              |              |  |  |  |
| (kosong)         |                                  |                     |              |  |  |  |
| Username : Admin | Menampilkan                      | Menampilkan         | [√] Diterima |  |  |  |
| D 1 4 1 '        | pesan password                   | pesan password      | [ ] D': 1 1  |  |  |  |
| Password : Admin | atau username                    | atau username       | [] Ditolak   |  |  |  |
|                  | salah                            | salah               |              |  |  |  |

# 2. Pengujian Tambah Data Tuna Netra

Pengujian tambah data tuna netra dapat dilihat pada tabel berikut:

Tabel 4. 16 Pengujian Tambah Tunanetra

| Data masukan | Keluaran yang    | Pengamatan | Kesimpulan   |
|--------------|------------------|------------|--------------|
|              | diharapkan       |            |              |
| Nama: jay    | Menampilkan data | Dapat      | [√] Diterima |
|              | nama penyandang  | menambah   |              |
|              |                  | data       | [] Ditolak   |
|              |                  | penyandang |              |
|              |                  |            |              |

## 3. Pengujian Edit Data Tuna Netra

Pengujian Edit Data Tuna netra dapat dilihat pada tabel berikut:

Tabel 4. 17 Pengujian Edit Tuna Netra

| Kasus dan Hasil Uji |            |      |          |          |              |
|---------------------|------------|------|----------|----------|--------------|
| Data                | Keluaran   | yang | Pengam   | natan    | Kesimpulan   |
| masukan             | diharapkan |      |          |          |              |
| Nama: Dru           | Data nama  |      | Dapat    | Mengubah | [√] Diterima |
|                     | penyandang |      | data pen | yandang  |              |
|                     |            |      | 1        |          | [] Ditolak   |
|                     |            |      |          |          |              |

# 4. Monitoring Penyandang

Pengujian monitoring Tuna netra dapat dilihat pada tabel berikut:

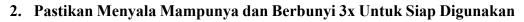
Tabel 4. 18 Pengujian Edit Tuna Netra

| Kasus dan Hasil Uji |                  |                           |              |  |  |  |
|---------------------|------------------|---------------------------|--------------|--|--|--|
| Data                | Kesimpulan       |                           |              |  |  |  |
| masukan             | diharapkan       |                           |              |  |  |  |
| Nama: fredy         | Menampilkan Data | Koordinat berubah         | [√] Diterima |  |  |  |
|                     | nama, koordinat  | setiap mendapatkan sinyal | [] Ditolak   |  |  |  |
|                     |                  |                           |              |  |  |  |

## 5. Pengujian Hapus Data Pemain

Pengujian tambah data pemain dapat dilihat pada tabel berikut:

Tabel 4. 19 Pengujian Hapus Tuna Netra


| Kasus dan Hasil Uji |                              |                 |              |  |  |  |
|---------------------|------------------------------|-----------------|--------------|--|--|--|
| Data                | Keluaran yang                | Pengamatan      | Kesimpulan   |  |  |  |
| masukan             | diharapkan                   |                 |              |  |  |  |
| Nama: aceng         | Data                         | Dapat Menghapus | [√] Diterima |  |  |  |
|                     | nama,koordinat<br>penyandang | data penyandang | [] Ditolak   |  |  |  |
|                     |                              |                 |              |  |  |  |

# 4.4 Hail Pengujian Perangkat Keras

# 1. Pengujian Pertama Nyalakan Tombol ON/OFF



Gambar 4. 1 Tombol ON/OFf

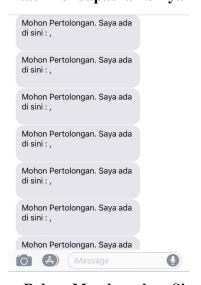




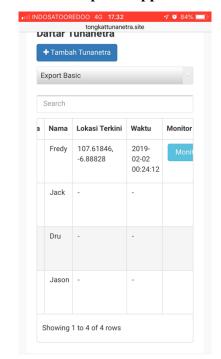
Gambar 4. 2 Rangkaian Sudah Terpasang

# 3. Tongkat Siap Digunakan




Gambar 4. 3 Tongkat Siap Dipakai

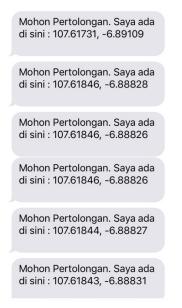




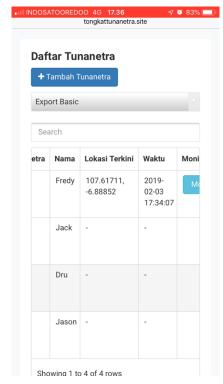

Gambar 4. 4 Tombol Reset Tongkat

5. GPS Belum Berubah Atau Mendapatkan Sinyal




Gambar 4. 5 GPS Yang Belum Mendapatkan Sinyal Pada Pesan Teks

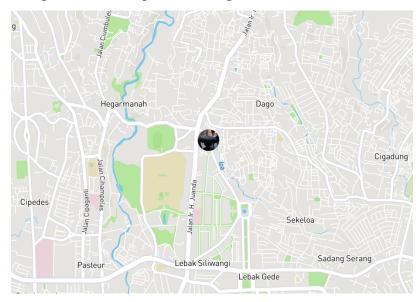



## 6. GPS Belum Berubah Pada Tampilan App Atau Web

Gambar 4. 6 GPS Belum Mendapatkan Sinyal

## 7. Jika GPS Sudah Mendapatkan Sinyal Pada Pesan Teks




Gambar 4. 7 GPS Sudah Mendapatkan Sinyal Dalam Bentuk Teks



# 8. GPS Yang Sudah Mendapatkan Sinyal

Gambar 4. 8 GPS Update

# 9. Tampilan Pada Map Monitoring



Gambar 4.9 Tampilan Map Monitoring